Delta link-homotopy on spatial graphs*

Ryo Nikkuni[†]

Two spatial embeddings of a graph are said to be delta edge-homotopic (resp. delta vertex-homotopic) if they are transformed into each other by self delta moves (resp. quasi adjacent-delta moves) and ambient isotopies. Our purpose in this talk is to explain the recent topics related to delta edge (vertex)-homotopy on spatial graphs. We refer the audience to [27, 28, 29] for the content of this talk and [31, 32, 33] for their outlines in Japanese. References contain not only articles which are cited in this note but also articles which will be cited in this talk.

0. Equivalence relations on spatial graphs

Let G be a finite graph which does not contain free vertices. We consider G as a topological space in the usual way. An embedding $f: G \to S^3$ is called a *spatial embedding* of G or simply a *spatial graph*.

Definition 0.1. ([42]) Two spatial embeddings f and g of a graph G are said to be (1) ambient isotopic if there is a level preserving locally flat embedding $\Phi: G \times I \to S^3 \times I$ between f and g.

- (2) cobordant if there is a locally flat embedding $\Phi: G \times I \to S^3 \times I$ between f and g.
- (3) isotopic if there is a level preserving embedding $\Phi: G \times I \to S^3 \times I$ between f and g.
- (4) *I-equivalent* if there is an embedding $\Phi: G \times I \to S^3 \times I$ between f and g.
- (5) edge-homotopic if they are transformed into each other by self crossing changes and ambient isotopies, where self crossing change is a crossing change on the same spatial edge.

We refer the audiences to [42] for the precise definitions. We remark here that edge-homotopy is a natural generalization of *link-homotopy* in the sense of J. Milnor [16].

A graph G is said to be *planar* if there exists an embedding of G into S^2 . It is known that an embedding of G into $S^2 \subset S^3$ is unique up to ambient isotopy [14].

Definition 0.2. A spatial embedding of a planar graph G is said to be

- (1) trivial if it is ambient isotopic to an embedding of G into $S^2 \subset S^3$.
- (2) slice if it is cobordant to the trivial spatial embedding.

^{*}Workshop of Fledglings on Low-dimensional Topology, Osaka City University, February. 2, 2004

[†]The author is partially supported by Fellowship of the Japan Society for the Promotion of Science for Young Scientists.

1. Delta edge (vertex)-homotopy

A delta move is a local move on spatial graphs as illustrated in Figure 1.1 (1). It is well known that the delta move is an unknotting operation [15, 21], namely if $G \approx S^1$ then any two knots can be transformed into each other by delta moves and ambient isotopies.

Definition 1.1. ([27]) (1) A self delta move is a delta move on the same spatial edge (see Figure 1.1 (2)). Two spatial embeddings of a graph are said to be delta edge-homotopic if they are transformed into each other by self delta moves and ambient isotopies.

- (2) A quasi adjacent-delta move is a delta move on exactly two adjacent spatial edges (see Figure 1.1 (3)). Two spatial embeddings of a graph are said to be delta vertex-homotopic if they are transformed into each other by quasi adjacent-delta moves and ambient isotopies.
- (3) A spatial embedding of a planar graph is said to be *delta edge* (resp. *vertex*)-homotopically trivial if it is delta edge (resp. vertex)-homotopic to the trivial one.

These are natural generalizations of *delta link-homotopy* (or a *self delta-equivalence*) on links that is an equivalence relation generated by delta moves on the same component [38, 39, 26, 25, 22, 23, 24]. It can be easily seen that any of the local knots attached to a spatial edge can be undone up to delta edge-homotopy.

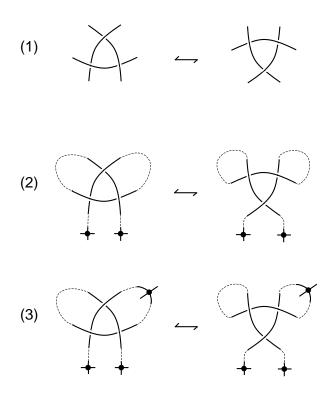
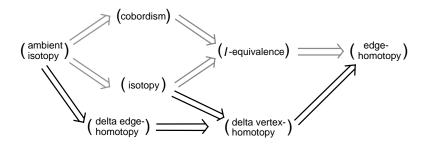


Fig. 1.1.

2. Relation to the other equivalence relations

First we investigate how strong is delta edge (resp. vertex)-homotopy and decide whether or not a graph has a delta edge (resp. vertex)-homotopically non-trivial spatial embedding.

Theorem 2.1. ([27])



Moreover these equivalence relations are different equivalence relations. \Box

We note that the gray implications have already proved in [42, Fundamental Theorem]. We have the following as a corollary of Theorem 2.1 and [42, Theorem B].

Corollary 2.2. ([27]) The following conditions are mutually equivalent.

- (1) Any two spatial embeddings of G are isotopic.
- (2) Any two spatial embeddings of G are I-equivalent.
- (3) Any two spatial embeddings of G are delta vertex-homotopic.
- (4) Any two spatial embeddings of G are edge-homotopic.
- (5) A graph G is a generalized bouquet, namely G does not contain a subgraph that is homeomorphic to the graphs $S^1 \coprod S^1$, K_4 or D_3 as illustrated in Figure 2.1. \square

On the other hand, for delta edge-homotopy we have the following.

Theorem 2.3. ([30]) The following conditions are mutually equivalent.

- (1) Any two spatial embeddings of G are delta edge-homotopic.
- (2) A graph G does not contain a subgraph that is homeomorphic to the graphs θ or $S^1 \coprod S^1$ as illustrated in Figure 2.1.
- (3) A graph G is homeomorphic to a bouquet B_m as illustrated in Figure 2.1. \square

3. Delta edge (resp. vertex)-homotopy invariants

To detect a delta edge (resp. vertex)-homotopically non-trivial spatial embedding of a graph, we construct some invariants. A cycle is a subgraph of G which is homeomorphic to S^1 , and a k-cycle is a cycle which contains exactly k vertices. We denote the set of all cycles of G, the set of all cycles containing an edge e of G and the set of all

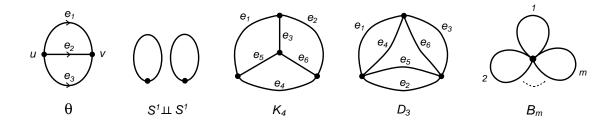


Fig. 2.1.

cycles containing edges e_1, e_2 of G by $\Gamma(G)$, $\Gamma_e(G)$ and $\Gamma_{e_1,e_2}(G)$, respectively. Let $\mathbf{Z}_m = \{0, 1, \ldots, m-1\}$ for a positive integer m and $\mathbf{Z}_0 = \mathbf{Z}$. A map $\omega : \Gamma(G) \to \mathbf{Z}_m$ is called a weight on $\Gamma(G)$. For an edge e and adjacent edges e_1, e_2 of G,

Definition 3.1. A weight $\omega : \Gamma(G) \to \mathbf{Z}_m$ is said to be

- (1) weakly balanced on e if $\sum_{\gamma \in \Gamma_e(G)} \omega(\gamma) \equiv 0 \pmod{m}$.
- (2) weakly balanced on e_1 and e_2 if $\sum_{\gamma \in \Gamma_{e_1,e_2}(G)} \omega(\gamma) \equiv 0 \pmod{m}$.

Definition 3.2. ([43]) A weight $\omega : \Gamma(G) \to \mathbf{Z}_m$ is said to be

- (1) balanced on e if $\sum_{\gamma \in \Gamma_e(G)} \omega(\gamma) \gamma = 0 \in H_1(G; \mathbf{Z}_m)$.
- (2) balanced on e_1 and e_2 if $\sum_{\gamma \in \Gamma_{e_1,e_2}(G)} \omega(\gamma) \gamma = 0 \in H_1(G; \mathbf{Z}_m)$.

For a weight $\omega: \Gamma(G) \to \mathbf{Z}_m$ and a spatial embedding f of G, we set

$$\tilde{\alpha}_{\omega}(f) \equiv \sum_{\gamma \in \Gamma(G)} \omega(\gamma) a_2(f(\gamma)) \pmod{m},$$

$$n_{\omega}(f) \equiv \frac{1}{18} \sum_{\gamma \in \Gamma(G)} \omega(\gamma) V_{f(\gamma)}^{(3)}(1) \pmod{m},$$

where $a_i(L)$ and $V_L^{(k)}(1)$ denote the *i*-th coefficient of the *Conway polynomial* and the k-th derivative at 1 of the *Jones polynomial*¹ $V_L(t)$ of a link L, respectively. We note that $(1/18)V_J^{(3)}(1)$ is an integer for any knot J.

Theorem 3.3. ([27]) (1) If ω is weakly balanced on each of edges (resp. pair of adjacent edges) of G, then $\tilde{\alpha}_{\omega}$ is a delta edge (resp. vertex)-homotopy invariant.

(2) If ω is balanced on each of edges (resp. pair of adjacent edges) of G, then n_{ω} is a delta edge (resp. vertex)-homotopy invariant. \square

Example 3.4. Let f be a theta curve as illustrated in Figure 5.2 (1). We define a weight $\omega : \Gamma(\theta) \to \mathbb{Z}_2$ by $\omega(\gamma) = 1$ for any $\gamma \in \Gamma(\theta)$. Then it is easy to see that ω is weakly balanced on each of edges of θ . Then by a calculation we have that $\tilde{\alpha}_{\omega}(f) = 1$. So f is a delta edge-homotopically non-trivial.

¹ We calculate the Jones polynomial of a link by the skein relation $tV_{J_+}(t) - t^{-1}V_{J_-}(t) = (t^{-\frac{1}{2}} - t^{\frac{1}{2}})V_{J_0}(t)$.

By using n_{ω} -invariant, we can show that there exist infinitely many spatial embeddings of K_4 up to delta edge-homotopy which are mutually delta vertex-homotopic [27, Example 4.2]. Besides we can show that there exist infinitely many spatial embeddings of K_5 up to delta vertex-homotopy which are mutually edge-homotopic [27, Example 4.3]. We note that this is also an example of infinitely many spatial embeddings of K_5 up to isotopy which are mutually edge-homotopic.

Remark 3.5. If a weight ω is balanced on each of edges (resp. each pair of adjacent edges) of G, then our $\tilde{\alpha}_{\omega}$ coincides with the α -invariant α_{ω} [43] that is known as an edge (resp. vertex)-homotopy invariant of spatial graphs.

4. Edge-homotopy classification of spatial embeddings of K_4

According to Corollary 2.2, there exist two spatial embeddings of each of the graphs $S^1 \coprod S^1$, K_4 and D_3 that are not edge-homotopic. Moreover, it is well known that two spatial embeddings of $S^1 \coprod S^1$ are edge-homotopic if and only if they have the same linking number [16]. We classify spatial embeddings of K_4 up to edge-homotopy from a viewpoint of delta vertex-homotopy.

Definition 4.1. An adjacent-delta move is a delta move on exactly three adjacent spatial edges (see Figures 4.1). We say that two spatial embeddings of a graph are Δ -homotopic if they are transformed into each other by quasi adjacent-delta moves, adjacent-delta moves and ambient isotopies.

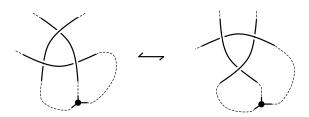


Fig. 4.1.

We define a weight $\omega : \Gamma(K_4) \to \mathbf{Z}$ by $\omega(\gamma) = 1$ if γ is a 3-cycle and $\omega(\gamma) = -1$ if γ is a 4-cycle. Then it is easy to see that ω is balanced on each of edges of G. We can also define a balanced weight $\omega : \Gamma(D_3) \to \mathbf{Z}$. Therefore $\alpha_{\omega}(f) = \tilde{\alpha}_{\omega}(f)$ for a spatial embedding f of K_4 (resp. D_3) is an edge-homotopy invariant (cf. Remark 3.5).

Theorem 4.2. ([28]) Let G be a graph that is K_4 or D_3 . Then two spatial embeddings f and g of G are Δ -homotopic if and only if $\alpha_{\omega}(f) = \alpha_{\omega}(g)$. \square

In fact an adjacent-delta move on spatial embeddings of K_4 is always realized by quasi adjacent-delta moves. Therefore we have the following by Theorem 2.1 and Theorem 4.2.

Theorem 4.3. ([28]) Let f and g be spatial embeddings of K_4 . Then the following conditions are mutually equivalent.

- (1) Two spatial embeddings f and g are Δ -homotopic.
- (2) Two spatial embeddings f and g are delta vertex-homotopic.
- (3) Two spatial embeddings f and g are edge-homotopic.
- (4) $\alpha_{\omega}(f) = \alpha_{\omega}(g)$. \square

We remark here that the α -invariant of a spatial embedding f of K_4 can be interpreted as Milnor's μ -invariant [16] of an associated 3-component link of f. We also remark here that edge-homotopy classes of spatial embeddings of D_3 have not classified yet.

5. Delta edge-homotopy on theta curves

According to Theorem 2.3, there exist two spatial embeddings of each of the graphs $S^1 \coprod S^1$ and θ that are not delta edge-homotopic. Moreover, spatial embeddings of $S^1 \coprod S^1$ were classified completely up to delta edge-homotopy [24]. So we want to classify theta curves up to delta edge-homotopy next. For a graph θ , we put $\gamma_1 = e_2 \cup e_3$, $\gamma_2 = e_3 \cup e_1$ and $\gamma_3 = e_1 \cup e_2$.

Definition 5.1. ([11]) For a theta curve f, the associated 3-component link L_f is the boundary of an orientable surface S_f with zero Seifert linking form having f as a spine (see Figure 5.1). We order and orient $L_f = K_f^1 \cup K_f^2 \cup K_f^3$ so that K_f^i is freely homotopic to $f(e_{i+1}) - f(e_{i+2})$, where suffixes are taken modulo 3. We denote the sublink $K_f^{i+1} \cup K_f^{i+2}$ by $l_i(f)$ (i = 1, 2, 3).

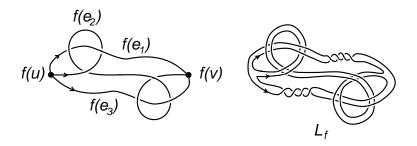


Fig. 5.1.

We note that if L is a 2-component link whose linking number is zero, then the Sato-Levine invariant $\beta(L)$ [37] coincides with $a_3(L)$ [1, 40]. It is known that $a_3(l_1(f)) = a_3(l_2(f)) = a_3(l_3(f))$ for any theta curve f [41] [8]. **Definition 5.2.** For a theta curve f, we define that $a_3(f) = a_3(S)$, where S is any 2-component sublink of L_f .

Theorem 5.3. ([29]) Two theta curves f and g are delta edge-homotopic if and only if $a_3(f) = a_3(g)$. \square

In fact we can see that $a_3(f) \equiv \sum_{i=1}^3 a_2(f(\gamma_i)) \equiv \tilde{\alpha}_{\omega}(f) \pmod{2}$, where $\omega : \Gamma(\theta) \to \mathbf{Z}_2$ is a weight as in Example 3.4. So our invariant $a_3(f)$ is finer than $\tilde{\alpha}_{\omega}(f)$.

Example 5.4. Let f be Kinoshita's theta curve as illustrated in Figure 5.2 (2). It is an example of an almost unknotted theta curve, namely each $f|_{\gamma_i}$ is a trivial knot (i = 1, 2, 3). By a calculation we have that $a_3(f) = 2$. So we have that Kinoshita's theta curve is delta edge-homotopically non-trivial.

In [29, THEOREM 4.1] we give a calculation of $a_3(f)$ for almost unknotted theta curves by the third derivative at 1 of the *Kojima-Yamasaki* η -function [13]. We can show that for any integer m there exists a almost unknotted theta curve f such that $a_3(f) = 2m$ [29, EXAMPLE 4.2] by using Wolcott's theta curves [48].

Definition 5.5. A theta curve f is called a boundary theta curve [34] if there are compact, connected and orientable surfaces S_1 , S_2 and S_3 in S^3 such that $S_i \cap f(\theta) = \partial S_i = f(\gamma_i)$ (i = 1, 2, 3) and $\text{int } S_i \cap \text{int } S_j = \emptyset$ $(i \neq j)$.

It is known that any 2-component boundary link is delta edge-homotopically trivial [39]. We have the similar result.

Corollary 5.6. ([29]) Any boundary theta curve is delta edge-homotopically trivial. \Box

We note that he converse of Corollary 5.6 is not true. Besides we consider the relationship between cobordism on theta curves and delta edge-homotopy.

Corollary 5.7. ([29]) Two cobordant theta curves are delta edge-homotopic. In particular, any slice theta curve is delta edge-homotopically trivial. \Box

We note that the converse of Corollary 5.7 is not true. We also note that cobordism on spatial graphs does not always imply delta edge-homotopy (cf. Theorem 2.1).

Let $DEH(\theta)$ be the set of all delta edge-homotopy classes of theta curves. We denote the delta edge-homotopy class of a theta curve f by [f]. By Theorem 5.3 and Corollary 5.7, we can see the following.

Theorem 5.8. ([29]) The set $DEH(\theta)$ forms a group under the vertex connected sum. Moreover, we have an isomorphism $a_3 : DEH(\theta) \xrightarrow{\cong} \mathbf{Z}$ by $a_3([f]) = a_3(f)$. A generator of $DEH(\theta)$ is given by the theta curve f as illustrated in Figure 5.2 (1). \square

Corollary 5.9. ([29]) Delta edge-homotopy classes of almost unknotted theta curves form a subgroup of DEH(θ) which is isomorphic to 2**Z** under a_3 . A generator of this subgroup is given by Kinoshita's theta curve. \square

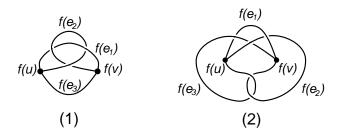


Fig. 5.2.

References

- [1] T. D. Cochran, Concordance invariance of coefficients of Conway's link polynomial, Invent. Math. 82 (1985), 527–541.
- [2] T. D. Cochran, Geometric invariants of link cobordism, Comment. Math. Helv. 60 (1985), 291-311.
- [3] J. H. Conway and McA. Gordon, Knots and links in spatial graphs, J. Graph Theory, 7 (1983), 445-453.
- [4] K. Habiro, Claspers and finite type invariants of links, Geom. Topol. 4 (2000), 1-83 (electronic). http://www.maths.warwick.ac.uk/gt/GTVol4/paper1.abs.html
- [5] K. Habiro, Clasp-pass moves on knots, unpublished.
- [6] J. Hoste, The Arf invariant of a totally proper link, Topology Appl. 18 (1984), 163-177.
- [7] V. F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. 12 (1985), 103-111.
- [8] T. Kanenobu, Vassiliev-type invariants of a theta-curve, J. Knot Theory Ramifications 6 (1997), 455–477.
- [9] T. Kanenobu and R. Nikkuni, Delta move and polynomial invariants of links, to appear in Topology and its Applications.
- [10] L. Kauffman, Invariants of graphs in three-space, Trans. Amer. Math. Soc. 311 (1989), 697-710.
- [11] L. Kauffman, J. Simon, K. Wolcott and P. Zhao, Invariants of theta-curves and other graphs in 3-space, Topology Appl. 49 (1993), 193–216.
- [12] S. Kinoshita, On θ_n -curves in R^3 and their constituent knots, Topology and computer science (Atami, 1986), 211–216, Kinokuniya, Tokyo, 1987.
- [13] S. Kojima and M. Yamasaki, Some new invariants of links, Invent. Math. 54 (1979), 213–228.
- [14] W. K. Mason, Homeomorphic continuous curves in 2-space are isotopic in 3-space, Trans. Amer. Math. Soc. 142 (1969), 269–290.
- [15] S.V. Matveev, Generalized surgeries of three-dimensional manifolds and representations of homology spheres (Russian), Mat. Zametki 42 (1987), 268–278, 345. English translation: Math. Notes 42 (1987), 651–656.
- $[16] \ \ {\rm J.\ Milnor,\ Link\ groups},\ Ann.\ of\ Math.\ {\bf 59}\ (1954),\ 177-195.$
- [17] J. Milnor, Isotopy of links, Algebraic geometry and topology. A symposium in honor of S. Lefschetz, pp. 280–306. Princeton University Press, Princeton, N. J., 1957.
- [18] K. Miyazaki, The theta-curve cobordism group is not abelian, Tokyo J. Math. 17 (1994), 165-169.
- [19] T. Motohashi and K. Taniyama, Delta unknotting operation and vertex homotopy of spatial graphs, KNOTS '96 (Tokyo), 185–200, World Sci. Publishing, River Edge, NJ, 1997.
- [20] H. Murakami, On derivatives of the Jones polynomial, Kobe J. Math. 3 (1986), 61-64.
- [21] H. Murakami and Y. Nakanishi, On a certain move generating link-homology, Math. Ann. 284 (1989), 75-89.
- [22] Y. Nakanishi, Delta link homotopy for two component links, Proceedings of the First Joint Japan-Mexico Meeting in Topology (Morelia, 1999). Topology Appl. 121 (2002), 169–182.
- [23] Y. Nakanishi and Y. Ohyama, Delta link homotopy for two component links. II, Knots 2000 Korea, Vol. 1 (Yongpyong). J. Knot Theory Ramifications 11 (2002), 353–362.
- [24] Y. Nakanishi and Y. Ohyama, Delta link homotopy for two component links. III, J. Math. Soc. Japan 55 (2003), 641-654.
- [25] Y. Nakanishi and T. Shibuya, Relations among self delta-equivalence and self sharp-equivalences for links, Knots in Hellas '98 (Delphi), 353–360, Ser. Knots Everything, 24, World Sci. Publishing, River Edge, NJ, 2000.

- [26] Y. Nakanishi and T. Shibuya, Link homotopy and quasi self delta-equivalence for links, J. Knot Theory Ramifications 9 (2000), 683–691.
- [27] R. Nikkuni, Delta link-homotopy on spatial graphs, Rev. Mat. Complut. 15 (2002), 543–570.
- [28] R. Nikkuni, Edge-homotopy classification of spatial complete graphs on four vertices, to appear in Journal of Knot Theory and its Ramifications.
- [29] R. Nikkuni, Delta edge-homotopy on theta curves, to appear in Mathematical Proceedings of the Cambridge Philosophical Society.
- [30] R. Nikkuni, Self delta move as a uniforming operation, in preparation.
- [31] R. Nikkuni, Delta link-homotopy on spatial graphs (in Japanese), Proceeding of the workshop "Topology of Knots III" (2001), 205–214.
- [32] R. Nikkuni, A remark on the α-invariant of spatial graphs (in Japanese), Proceeding of the workshop "Topology of Knots V" (2003), 70–78.
- [33] R. Nikkuni, Delta edge-homotopy on theta curves (in Japanese), Proceeding of the Workshop "Geometry and Algebra of Knots and Manifolds II" (2004), 106–114.
- [34] R. Nikkuni and R. Shinjo, On boundary spatial graphs, in prepration.
- [35] M. Okada, Delta-unknotting operation and the second coefficient of the Conway polynomial, J. Math. Soc. Japan 42 (1990), 713-717.
- [36] D. Rolfsen, Knots and Links, Mathematics Lecture Series, 7. Publish or Perish, Inc., Berkeley, Calif., 1976.
- [37] N. Sato, Cobordisms of semi-boundary links, Topology Appl. 18 (1984) 225–234.
- [38] T. Shibuya, Self Δ -equivalence of ribbon links, Osaka J. Math. 33 (1996), 751–760.
- [39] T. Shibuya, On self Δ -equivalence of boundary links, Osaka J. Math. 37 (2000), 37–55.
- [40] R. Sturm Beiss, The Arf and Sato link concordance invariants, Trans. Amer. Math. Soc. 322 (1990), 479-491.
- [41] K. Taniyama, Cobordism of theta curves in S³, Math. Proc. Cambridge Philos. Soc. 113 (1993), 97–106.
- [42] K. Taniyama, Cobordism, homotopy and homology of graphs in R³, Topology 33 (1994), 509–523.
- [43] K. Taniyama, Link homotopy invariants of graphs in R³, Rev. Mat. Univ. Complut. Madrid 7 (1994), 129–144.
- [44] K. Taniyama, Homology classification of spatial embeddings of a graph, Topology Appl. 65 (1995), 205–228.
- [45] K. Taniyama and A. Yasuhara, Clasp-pass moves on knots, links and spatial graphs, Topology Appl. 122 (2002), 501-529.
- [46] K. Taniyama and A. Yasuhara, Band description of knots and Vassiliev invariants, Math. Proc. Cambridge Philos. Soc. 133 (2002), 325–343.
- [47] K. Taniyama and A. Yasuhara, Local moves on spatial graphs and finite type invariants, Pacific J. Math. 211 (2003), 183–200
- [48] K. Wolcott, The knotting of theta curves and other graphs in S³, Geometry and topology (Athens, Ga., 1985), 325–346, Lecture Notes in Pure and Appl. Math., 105, Dekker, New York, 1987.
- [49] Y. Q. Wu, On the Arf invariant of links, Math. Proc. Cambridge Philos. Soc. 100 (1986), 355–359.
- [50] M. Yamamoto, Knots in spatial embeddings of the complete graph on four vertices, Topology Appl. 36 (1990), 291–298.
- [51] A. Yasuhara, Delta-unknotting operation and adaptability of certain graphs, KNOTS '96 (Tokyo), 115–121, World Sci. Publishing, River Edge, NJ, 1997.
- [52] A. Yasuhara, C_k -moves on spatial theta-curves and Vassiliev invariants, $Topology\ Appl.\ 128\ (2003),\ 309-324.$
- [53] D. Yetter, Category theoretic representations of knotted graphs in S³, Adv. Math. 77 (1989), 137–155.

Department of Mathematics, School of Education, Waseda University Nishi-Waseda 1-6-1, Shinjuku-ku, Tokyo, 169-8050, Japan nick@kurenai.waseda.jp