ON THE CONFIGURATION SPACE OF POINTS AND THE CASSON INVARIANT

TETSUHIRO MORIYAMA

1. Introduction

Let M be an oriented closed homology 3-sphere, and $\lambda(M)$ Casson invariant of M. In this report, we construct some topological invariant I(M) such that

- $I(M) = \lambda(M)$ (Theorem 1). $I(M) = -\frac{\operatorname{Sign} X_{f_M}}{8}$, where X_{f_M} is a certain 4-dimensional submanifold embedded in the two point configuration space of $M \setminus \{p\}$ (Theorem 2)

And we will also see outline of the proofs of these theorems ($\S 5$). Roughly speaking, $\lambda(M)$ is defined by

$$\lambda(M) = \frac{1}{2} \# \frac{\operatorname{Hom}(\pi_1(M), SU(2))^{\operatorname{irr}}}{\operatorname{conjugacy}},$$

and it is known that $\lambda(M)$ is determined by the Dehn surgery formula(c.f. [1]). On the other hand, $\lambda(M)$ is the only one non-trivial invariant which is finite type of degree 1 for both the algebraically split link surgery and Torelli surgery.

Let X be an oriented compact smooth spin 4-manifold with boundary $\partial X = M$, such X always exists. Rohlin invariant $\mu(M)$ of M is defined by

$$\mu(M) \equiv \frac{\operatorname{Sign} X}{8} \pmod{2},$$

and there is a formula

$$\lambda(M) \equiv \mu(M) \pmod{2}$$
.

Namely, $\lambda(M)$ is an integral lift of Rohlin invariant $\mu(M)$.

On the face of things, the definitions of Casson invariant and Rohlin invariant looks very different: one is come from the flat SU(2) connections, and the another one is from 4-dimensional. But some relations between Casson invariant and the signature of 4-manifolds are known.

Key words and phrases. Casson invariant, signature, configuration space, framing, finite type invariant.

Here are such two examples as follows. Let $V(a_1, \ldots, a_n)$ be the Milnor fiber of the Seifert homology 3-sphere $\Sigma(a_1, \ldots, a_n)$, then

$$-\frac{\operatorname{Sign} V(a_1,\ldots,a_n)}{8} = \lambda(\Sigma(a_1,\ldots,a_n))$$

([7],[8]). The another example is about Ohta's invariant $\tau(M)$ (preprint). He constructed some oriented compact smooth 4-manifold N with boundary $\partial N \cong M$ in the moduli space of anti-self dual connections on some principal SU(2) bundle $P \to M \times S^1$, and proved that N is spin and

$$\tau(M) = -\frac{\operatorname{Sign} N}{8}$$

is an topological invariant of M. Hence, one can see that

$$\tau(M) \equiv \mu(M) \pmod{2}$$
.

It is unknown if $\tau(M) = \lambda(M)$.

As mentioned above, this report gives some topological construction of Casson invariant by using the configuration spaces of 3-manifolds. This results depends on the work by Kuperberg-Thurston [11] that relate our invariant to Casson invariant. Our construction corresponds to the first non-trivial term of their invariant. In [11], they gave a purely topological definition of the perturbative quantum invariants of links and 3-manifolds. Ordinally, this kind of work for the definition of the perturbative quantum invariants of 3-manifolds and links is by Kontsevich [10]. The related works, which uses the configuration spaces, was given by Axelrod-Singer [2, 3], Bott-Taubes [6], later by Bott-Cattaneo [4, 5], and Kuperberg-Thurston.

2. Configuration space of points and Gauss map

Two point configuration space $C_2(X)$ of a space X is defined by

$$C_2(X) = \{(x, y) \mid x, y \in X, \ x \neq y\}.$$

2.1. Euclidean space. Let

$$\varphi_{\mathbb{R}^3} \colon C_2(\mathbb{R}^3) \to S^2$$

be the map defined by

$$\varphi_{\mathbb{R}^3}(x,y) = \frac{y-x}{\|y-x\|}$$

for $(x, y) \in C_2(\mathbb{R}^3)$ which is called Gauss map. There exists a homeomorphism

$$C_2(\mathbb{R}^3) \cong \mathbb{R}^3 \times (0, \infty) \times S^2, \quad (x, y) \mapsto (z, r, v)$$

by the corresponding

$$z = \frac{x+y}{2}, \quad r = \frac{\|y-x\|}{2}, \quad v = \varphi_{\mathbb{R}^3}(x,y).$$

Immediately, the pre-image $\varphi_{\mathbb{R}^3}^{-1}(v)$ of a point $v \in S^2$ is contractible. In particular, its signature is zero. As we will see later (Theorem 2), this vanishing corresponds to the fact $\lambda(S^3) = 0$.

2.2. The map $\varphi_f \colon \partial C_2(\hat{M}) \to S^2$. We compactify $C_2(\hat{M})$ by the method of Bott-Taubes's paper. In this subsection, we construct a "partial Gauss map" $\varphi_f \colon U \to S^2$, where U is a complement of a certain compact subset of $C_2(\hat{M})$ by using some additional data f. By the definition of the compactification of $C_2(\hat{M})$, φ_f defined on U naturally extends to $\partial C_2(\hat{M})$.

Let M be an oriented closed homology 3-sphere and set $\hat{M} = M \# \mathbb{R}^3$. Let $f: T\hat{M} \to \hat{M} \times \mathbb{R}^3$ be a framing of $T\hat{M}$. In this report, we always assume that any framing of $T\hat{M}$ is compatible with Euclidean framing $f_{\mathbb{R}^3}$ over the complement of some compact subset of \hat{M} . Now, we define a map $\varphi_f: U \to S^2$ as follows, where $U = U_1 \cup U_2 \cup U_3$. Each U_i is defined in later three cases.

2.2.1. Two points are very close. First, let

$$U_1 = \{(x, y) \in C_2(\hat{M}) \mid d(x, y) < \varepsilon\},\$$

where d is a metric of \hat{M} and $\varepsilon > 0$ is small enough. Suppose $(x, y) \in U_1$. Then we can define the "direction" $\varphi_f(x, y) \in S^2$ from x to y by using f.

2.2.2. one point is in the end of \hat{M} . Suppose that \hat{M} is obtained by connecting a 3-disk $D_p \subset M$ around $p \in M$ and $D^3 \subset \mathbb{R}^3$ around 0. Let $V \subset \hat{M}$ be the open subset corresponding to $M \setminus D_p$, and $W \subset \hat{M}$ corresponding $\mathbb{R}^3 \setminus D^3$. Let

$$U_2 = (V \times W) \cup (W \cup V).$$

We assume that f is coincides with $f_{\mathbb{R}^3}$ on some open set including the closure of W.

If $x \in V$ and $y \in W$, then define $\varphi_f(x,y) = y$. Note that this definition makes sense, because we can think y as a point in \mathbb{R}^3 . Also define $\varphi_f(y,x) = -y$.

2.2.3. Both two points in the end. Let

$$U_3 = C_2(W),$$

and suppose $(x,y) \in U_3$. In this case, we define

$$\varphi_f(x,y) = \frac{y-x}{\|y-x\|}.$$

2.3. **TEST.** What we see in this subsection is how we get an invariant of (M, f) which is an integral lift of Rohlin invariant under the assumption of the existence of a map

$$\tilde{\varphi}_f \colon C_2(\hat{M}) \to S^2$$

such that $\tilde{\varphi}_f|_{\partial C_2(\hat{M})} = \varphi_f$.

Suppose (M, f) satisfies the above assumption. Taking a regular value $v \in S^2$ of $\tilde{\varphi}_f$, set

$$X_f = \tilde{\varphi}_f^{-1}(v).$$

Then X_f is an oriented compact smooth 4-manifold satisfying

- $(1) \ \partial X_f \cong M \# M \# (-M),$
- (2) X_f is spin,
- (3) the signature σ_f of X_f depends only on (M, f).

The property (1) is from the definition of φ_f . Since the normal bundle of $X_f \subset C_2(\hat{M})$ and the tangent bundle $TC_2(\hat{M})$ are spin, X_f is also spin, so we have (2). Another manifold X_f come from another map $\tilde{\varphi}_f' \colon C_2(\hat{M}) \to S^2$ is cobordant to X_f relative to the boundary, hence. Consequently, σ_f is an invariant of a pair (M, f), and we obtain (3). By the definition of Rohlin invariant, one can see

$$\frac{\sigma_f}{8} \equiv \mu(M) \pmod{2}.$$

Therefore, we get an integral lift $\sigma_f/8$ of Rohlin invariant.

3. Two numbers d_f and σ_f

In this section, we define two integers d_f and σ_f used to define the invariant I(M).

Let

$$\bar{C}_2(\hat{M}, f) = S^2 \cup_{\varphi_f} C_2(\hat{M})$$

be the attaching space by the map $\varphi_f \colon \partial C_2(\hat{M}) \to S^2$. Using the long exact sequence of $(\bar{C}_2(\hat{M}, f), S^2)$, we have an isomorphism

$$H^k(\bar{C}_2(\hat{M}, f); \mathbb{Z}) \cong \begin{cases} \mathbb{Z}, & \text{if } k = 0, 2, 4, 6 \\ 0, & \text{otherwise.} \end{cases}$$

The following lemma define the integer d_f , this definition is similar to the cohomological definition of the Hopf invariant(c.f. [9]).

Lemma 3.1. There exists a graded ring isomorphism

$$H^*(\bar{C}_2(\hat{M}, f); \mathbb{Z}) \cong \mathbb{Z}[a, b]/(a^2 - d_f b, b^2)$$

for some integer d_f , where $\deg a = 2$, $\deg b = 4$.

This number d_f is nothing but the Casson invariant for the framed 3-manifold ([11]).

Let $L_{S^2} \to \hat{S}^2$ be a complex line bundle with Euler number 1, and s_{S^2} a generic section. We can assume that $s_{S^2}^{-1}(0)$ consists just one point. Set $L_f = \varphi_f^* L_{S^2}$, $s_f = \varphi_f^* s_{S^2}$. Then $s_f : \partial C_2(\hat{M}) \to L_f$ is a generic section, and $s_f^{-1}(0) \cong M \# M \# (-M)$. Since the inclusion $\partial C_2(\hat{M}) \hookrightarrow C_2(\hat{M})$ induces an isomorphism on H^2 , there exists only one isomorphism class of a complex line bundle $\tilde{L}_f \to C_2(\hat{M})$ such that $\tilde{L}_f|_{\partial C_2(\hat{M})} = L_f$.

$$\begin{array}{ccc} L_f & \longrightarrow & \tilde{L}_f \\ \downarrow & & \downarrow \\ \partial C_2(\hat{M}) & \longrightarrow & C_2(\hat{M}) \end{array}$$

Let $\tilde{s}_f: C_2(\hat{M}) \to \tilde{L}_f$ be a generic section such that $\tilde{s}_f|_{\partial C_2(\hat{M})} = s_f$. Let

$$X_f = \tilde{s}_f^{-1}(0),$$

then X_f is an oriented compact smooth 4-manifold with boundary $\partial X_f \cong M \# M \# (-M)$. Define

$$\sigma_f = \operatorname{Sign} X_f$$
.

Another choices \tilde{s}'_f give the save value of σ_f , because a generic homotopy between \tilde{s}_f and \tilde{s}'_f gives a cobordism between X_f and X'_f .

Definition 3.2.

$$I(M) = \frac{d_f - \sigma_f}{8}$$
$$I(M, f) = (I(M), d_f)$$

4. Statements and Examples

Let (M, f) be an oriented closed homology 3-sphere with a framing of $T\hat{M}$. Let I(M) be the number defined in Definition 3.2.

Theorem 1 ([14]). I(M) is a \mathbb{Z} -valued topological invariant of M, and it equals to Casson invariant of M.

Now, we see some examples of the calculations of I(M) and I(M, f).

4.1. Case of $M = S^3$ with Euclidean framing. Let $M = S^3$, then $\hat{M} = \mathbb{R}^3$. Let $f_{\mathbb{R}^3}$ be the Euclidean framing on $T\mathbb{R}^3$, and we have $\varphi_{f_{\mathbb{R}^3}} = \varphi_{\mathbb{R}^3}.$

One can take the line bundle $\tilde{L}_{f_{\mathbb{R}^3}} \to C_2(\hat{M})$ as the pull-back bundle $\varphi_{f_{m3}}^*L_{S^2}$, and the pull-back section

$$\tilde{s}_{f_{\mathbb{R}^3}} = \varphi_{\mathbb{R}^3}^* s_{S^2} \colon C_2(\hat{M}) \to \tilde{L}_{f_{\mathbb{R}^3}}$$

is generic. If $v = s_{S^2}^{-1}(0)$, then we have

$$X_{f_{\mathbb{R}^3}} = \tilde{s}_{f_{\mathbb{R}^3}}^{-1}(0) = \varphi_{\mathbb{R}^3}^{-1}(v) \cong \mathbb{R}^4,$$

and so, we obtain $\sigma_{f_{\mathbb{R}^3}} = 0$. Since $\bar{C}_2(\mathbb{R}^3) \cong S^4 \times S^2$, we have the ring isomorphism

$$H^*(\bar{C}_2(\hat{M}, f); \mathbb{Z}) \cong R_0,$$

this implies $d_{f_{\mathbb{D}^3}} = 0$. Therefore, we have

$$I(S^3) = \frac{d_{f_{\mathbb{R}^3}} - \sigma_{f_{\mathbb{R}^3}}}{8} = \frac{0 - 0}{8} = 0$$

and

$$I(S^3, f_{\mathbb{R}^3}) = (I(M), d_{f_{\mathbb{R}^3}}) = (0, 0).$$

4.2. Case of $M = S^3$ with any framings. Let f be an any framing of \mathbb{R}^3 which is always obtained by $f = gf_{\mathbb{R}^3}$ for some compact supported map $g: \mathbb{R}^3 \to SO(3)$. Any framings on \mathbb{R}^3 are classified by the degree deg $g \in \mathbb{Z}$ of the induced homomorphism $g^* \colon H^3_c(SO(3); \mathbb{Z}) \to$ $H_c^3(\mathbb{R}^3;\mathbb{Z}).$

Let $n = \deg g$. The map $\varphi_f \colon \partial C_2(\hat{M}) \cong S^3 \times S^2 \to S^2$ essentially equals to the evaluation map ev_q as follows:

$$ev_g \colon S^3 \times S^2 \to S^2, \quad (x,v) \mapsto g(x)v$$

Therefore, we have $\bar{C}_2(\hat{M}, f) \cong S(E_n)$, where $\pi \colon E_n \to S^4$ is a real vector bundle with $\langle [S^4], p_1(E_n) \rangle = 4n$ and $S(E_n)$ the associated sphere bundle. Calculating the characteristic classes of $TS(E_n)$ and $\pi^*E_n([13])$, we obtain that $d_f = n$ and $\sigma_f = n$. This implies that

$$I(S^3, f) = (\frac{d_f - \sigma_f}{8}, d_f) = (0, n),$$

and of course, we obtain $I(S^3) = 0$ again.

4.3. Connected sum. Let (M_1, f_1) , (M_2, f_2) be framed manifolds. Set $M = M_1 \# M_2$, $f = f_1 \# f_2$. Let us think $\hat{M}_1 = M_1 \# \mathbb{R}_1$, $\hat{M}_2 = M_2 \# \mathbb{R}_2$, where

$$\mathbb{R}_1 = \{(x_1, x_2, x_3) \mid x_1 < 0\}, \quad \mathbb{R}_2 = \{(x_1, x_2, x_3) \mid x_1 > 0\},\$$

and each f_i is a faming over \hat{M}_1 compatible with the Euclidean framing on the end. Moreover, we suppose that \hat{M}_i is the connected sum at around a point in M_i and around $(\pm R, 0, 0) \in \mathbb{R}_i$ for some large number $R \gg 1$. Then we can take \hat{M} as

$$\hat{M}_1 \cup V \cup \hat{M}_2$$

such that the M_1 -part and M_2 -part in \hat{M} are very far each other, where $V = (-1, 1) \times \mathbb{R}^2$.

Next, we will construct $\varphi_f \colon \partial C_2(\hat{M}) \to S^2$. Define a map

$$\varphi_{ij} \colon (V \cup \hat{M}_i) \times (V \cup \hat{M}_j) \setminus \Delta \to S^2$$

as follows $(i, j = 1, 2, i \neq j)$. Let $h: \hat{M} \to \mathbb{R}^3$ be the map obtained by collapsing each M_i -part to $(\pm R, 0, 0)$. Then $\varphi_{ij}(x, y)$ is defined by

$$\varphi_{ij}(x,y) = \frac{h(y) - h(x)}{\|h(y) - h(x)\|}.$$

Let $\tilde{\varphi}_{f_i} \colon C_2(M_i) \to \mathbb{C}P^3$ be the classifying map of \tilde{L}_{f_i} . Let $\tilde{\varphi}_f \colon C_2(\hat{M}) \to \mathbb{C}P^3$ be an extension map of $\tilde{\varphi}_f$ obtained from $\tilde{\varphi}_{f_1}$, $\tilde{\varphi}_{f_2}$ and φ_{ij} . Note that any two such maps are coincide on these common domain. Let $\mathbb{C}P^{2'} \subset \mathbb{C}P^3$ be a submanifold homologous to $\mathbb{C}P^2$ that transversally intersect with $\mathbb{C}P^1 \cong S^2$ at one point $v = (1,0,0) \in S^2$. There exists a generic section of the complex line bundle $L_{\mathbb{C}P^3} \to \mathbb{C}P^3$ with $c_1(L_{\mathbb{C}P^3}) = 1$ such that the pre-image of zero is $\mathbb{C}P^{2'}$. Hence

$$X_f = \varphi_f(\mathbb{C}P^{2'}) \cong X_{f_1} \sharp X_{f_2},$$

this means $\sigma_f = \sigma_{f_1} + \sigma_{f_2}$. And also it is easy to see that $d_f = d_{f_1} + d_{f_2}$. Therefore, we obtain the following:

Proposition 4.1.

$$I(M, f) = I(M_1, f_1) + I(M_2, f_2)$$

$$I(M) = I(M_1) + I(M_2)$$

4.4. **Opposite orientation.** Let M' be M with the opposite orientation, and let $f' = (-f_1, f_2, f_3)$ where $f = (f_1, f_2, f_3)$. By the definition of d_f and σ_f , we have

$$d_{f'} = -d_f, \quad \sigma_{f'} = -\sigma_f.$$

This implies that

Proposition 4.2.

$$I(M', f') = -I(M, f)$$
$$I(M') = -I(M)$$

5. Outline of proof

5.1. Integrality of I(M). Since $\Omega_5^{spin}(S^2) = 0([15])$, there exists an oriented compact smooth spin 6-manifold Z with a complex line bundle $L_Z \to Z$ such that

$$\partial Z = \partial C_2(\hat{M}), \quad L_Z|_{\partial C_2(\hat{M})} = L_f$$

and the image of the classifying map of L_Z is contained in S^2 . Let

$$W = C_2(\hat{M}) \cup_{\partial C_2(\hat{M})} Z, \quad L_W = \tilde{L}_f \cup_{L_f} L_Z \to W.$$

Then, (W, L_W) is an oriented closed smooth spin 6-manifold with a complex line bundle. Applying the index theorem to (W, L_W) , one can see that the integral

$$\int_{W} ch(L_{W}) \hat{\mathcal{A}}(TW)$$

is an integer (c.f. [12]). Here, ch is the Chern character and $\hat{\mathcal{A}}$ is the $\hat{\mathcal{A}}$ -genus. This value equals to

$$I(M) - \frac{\operatorname{Sign} X_Z}{8},$$

where X_Z is the pre-image of 0 of a generic section, which is an extension of s_f of L_f , of L_Z . Since X_Z is spin and ∂X_Z is a homology 3-sphere, we have Sign $X_Z \equiv 0 \pmod{8}$. Therefore, we obtain the following proposition.

Proposition 5.1. The number I(M) is an integer.

5.2. **Topological invariance of** I(M)**.** Let f, f' be framings of $T\hat{M}$. f' can be represented by f' = gf for some $g: \hat{M} \to SO(3)$. Then $(M, f') \cong (M \# S^3, f \# g f_{\mathbb{R}^3})$. According to Proposition 4.1,

$$I(M, f') = I(M, f) + I(S^3, gf_{\mathbb{R}^3}) = I(M, f) + (0, \deg g).$$

In other words,

$$d_{f'} = d_f + \deg g, \quad \sigma_{f'} = \sigma_f + \deg g.$$

In particular, I(M) does not depend on f. Therefore

Proposition 5.2. I(M) is an topological invariant of M.

5.3. Casson invariant. Kuperberg-Thurston showed that some value $\tilde{I}_1(M)$ is Casson invariant by using the theory of finite type invariants of homology 3-spheres in their paper [11]. The invariant $\tilde{I}(M)$ is constructed as follows. First, define

$$I_{1}(M) = \frac{1}{6} \langle \bar{C}_{2}(\hat{M}, f), c_{1}(L_{f})^{3} \rangle,$$

$$\delta_{1}(M) = \frac{1}{24} \langle X_{f}, p_{1}(TC_{2}(\hat{M})|_{X_{f}}) \rangle.$$

And then I(M) is defined by

$$\tilde{I}_1(M) = I_1(M) - \delta_1(M).$$

Calculating characteristic classes, we have the following proposition.

Proposition 5.3. $\tilde{I}_1(M) = I(M)$.

By Proposition 5.3, we obtain Theorem 1. To prove that I(M) is a \mathbb{Z} -valued topological invariant, one only need Proposition 5.1,5.2.

6. Casson invariant as a signature

By $\S 5.2$, we obtain the following proposition.

Proposition 6.1. There exists only one framing f_M of $T\hat{M}$ such that $d_{f_M} = 0$.

Therefore, we have

$$I(M) = \frac{d_{f_M} - \sigma_{f_M}}{8} = -\frac{\sigma_{f_M}}{8}.$$

Theorem 2.

$$\lambda(M) = -\frac{\sigma_{f_M}}{8}.$$

REFERENCES

- [1] Selman Akbulut and John D. McCarthy. Casson's invariant for oriented homology 3-spheres, volume 36 of Mathematical Notes. Princeton University Press, Princeton, NJ, 1990. An exposition.
- [2] Scott Axelrod and I. M. Singer. Chern-Simons perturbation theory. In Proceedings of the XXth International Conference on Differential Geometric Methods in Theoretical Physics, Vol. 1, 2 (New York, 1991), pages 3–45, River Edge, NJ, 1992. World Sci. Publishing.
- [3] Scott Axelrod and I. M. Singer. Chern-Simons perturbation theory. II. J. Differential Geom., 39(1):173–213, 1994.
- [4] Raoul Bott and Alberto S. Cattaneo. Integral invariants of 3-manifolds. *J. Differential Geom.*, 48(1):91–133, 1998.
- [5] Raoul Bott and Alberto S. Cattaneo. Integral invariants of 3-manifolds. II. J. Differential Geom., 53(1):1–13, 1999.
- [6] Raoul Bott and Clifford Taubes. On the self-linking of knots. *J. Math. Phys.*, 35(10):5247–5287, 1994. Topology and physics.
- [7] Ronald Fintushel and Ronald J. Stern. Instanton homology of Seifert fibred homology three spheres. *Proc. London Math. Soc.* (3), 61(1):109–137, 1990.
- [8] Shinji Fukuhara, Yukio Matsumoto, and Koichi Sakamoto. Casson's invariant of Seifert homology 3-spheres. *Math. Ann.*, 287(2):275–285, 1990.
- [9] Dale Husemoller. Fibre bundles, volume 20 of Graduate Texts in Mathematics. Springer-Verlag, New York, third edition, 1994.
- [10] Maxim Kontsevich. Feynman diagrams and low-dimensional topology. In First European Congress of Mathematics, Vol. II (Paris, 1992), volume 120 of Progr. Math., pages 97–121. Birkhäuser, Basel, 1994.
- [11] Greg Kuperberg and Dylan P. Thurston. Perturbative 3-manifold invariants by cut-and-paste topology. *math.GT/9912167*, 1999.
- [12] H. Blaine Lawson, Jr. and Marie-Louise Michelsohn. Spin geometry, volume 38 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1989.
- [13] John W. Milnor and James D. Stasheff. *Characteristic classes*. Princeton University Press, Princeton, N. J., 1974. Annals of Mathematics Studies, No. 76.
- [14] Tetsuhiro Moriyama. The configuration space of points and the casson invariant. *preprint*, 2004.
- [15] Robert E. Stong. *Notes on cobordism theory*. Mathematical notes. Princeton University Press, Princeton, N.J., 1968.

E-mail address: tetsuhir@ms.u-tokyo.ac.jp

URL: http://www.ms.u-tokyo.ac.jp/~tetsuhir/

Current address: Graduate School of Mathematical Sciences, Tokyo University, 3-8-1 Komaba, Meguro, Tokyo 153-8914, Japan