A surgery description of homology solid tori and its applications to the Casson invariant

Yukihiro TSUTSUMI* Keio University (JSPS Research Fellow)

February 1, 2003 Note[†]for Workshop of Fledglings on Low-dimensional Topology" at Osaka City University

1 Notation

M, H: an oriented 3-manifold, an oriented $\mathbb{Z}HS^3$, $K \subset H$: a knot in H, \mathcal{L} (resp. $\mathcal{K} = (K, \gamma)$): a rational framed link (resp. knot) in H, $X' = \chi(X; \mathcal{L})$: the object obtained from X by surgery along (K, γ) , and we call $(X; \mathcal{L})$ a surgery description for X',

lk : the linking number,

 λ : the Casson invariant,

 $\Delta_{K \subset H}(t)$: the symmetric Alexander polynomial of K in H,

 $\varphi: M_K^r \to H$: the *r*-fold cyclic cover of *H* branched along a knot $K \subset H$.

Lemma 1.1. Let $K_1 \cup K_2$ be a link in an $\mathbb{Z}HS^3$ H. Let $(\ell, 1/n)$ be a 1/n-framed knot in H disjoint from $K_1 \cup K_2$. Then in $H' = \chi(H; (\ell, 1/n))$,

$$lk_{H'}(K'_1, K'_2) = lk_H(K_1, K_2) - n \cdot lk_H(K_1, \ell) \cdot lk_H(K_2, \ell),$$

where $K'_{i} = \chi(K_{i}; (\ell, 1/n)).$

^{*}email: yukihiro@math.keio.ac.jp, Department of Mathematics, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku Yokohama 223-8522, Japan. [†]See [20] for the details.

In particular, when $lk(K_i, \ell) = 0$, we have

$$lk_{H'}(\chi(K_1; (\ell, 1/n)), \chi(K_2; (\ell, 1/n))) = lk_H(K_1, K_2).$$

Definition 1.2. A link $L = K_1 \cup K_2 \cup \cdots \cup K_m$ is called a *boundary link* if K_i bound mutually disjoint compact, connected, oriented surfaces S_i .

For a boundary link, we have $lk(K_i, K_j) = 0$. Furthermore, by using Lemma 1.1 we have that $\Delta_{K_j \subset H}(t) = \Delta_{\chi(K_j;(K_i,\varepsilon_i)) \subset \chi(H;(K_i,\varepsilon_i))}(t)$. The framing number for K_i is unchanged by surgery along other components.

2 Boundary links and the Casson invariant

In 1985, A. Casson¹ introduced an \mathbb{Z} -valued invariant λ for oriented $\mathbb{Z}HS^3s$ which satisfies the following properties:

- $\lambda(S^3) = 0 \ (\lambda(H) = 0 \text{ if } \pi_1(H) = 1)$
- $\lambda(-H) = -\lambda(H)$
- $\lambda(H_1 \# H_2) = \lambda(H_1) + \lambda(H_2)$
- $\lambda(\chi(H; (K, 1/n))) \lambda(H) = \frac{n}{2} \Delta_{K \subset H}''(1)^{-2/3}$

 $^{^{1}}See [1], [16]$

²This is called the Casson surgery formula. See [6] for the link version.

³This is the only restriction in some sense. That is, given two knot-Alexander polynomials $\Lambda_1(t)$ and $\Lambda_2(t)$ with $\varepsilon_1 \Lambda''(1) = \varepsilon_2 \Lambda''(1)$, there are two knots K_1 , K_2 in S^3 with $\Delta_{K_i}(t) = \Lambda_i(t)$ such that $\chi(S^3; (K_1, \varepsilon_1)) = \chi(S^3; (K_2, \varepsilon_2))$ [19, Theorem 1.1]. Can you construct three more knots?

Note that $\frac{1}{2}\Delta_K''(1) = a_2(K)$, where a_n denotes the *n*th coefficient of the Conway polynomial $\nabla_K(z) = \Delta_K(t)|_{t^{-1/2} - t^{1/2} = z}$.

Let H be an $\mathbb{Z}HS^3$, and

$$H = H_1 \stackrel{(K_1,\varepsilon_1)}{\longrightarrow} H_2 \stackrel{(K_2,\varepsilon_2)}{\longrightarrow} \cdots \stackrel{(K_{n-1},\varepsilon_{n-1})}{\longrightarrow} H_n \stackrel{(K_n,\varepsilon_n)}{\longrightarrow} H_n$$

a sequence of surgeries, where K_i is a knot in H_i and $\varepsilon_i \in \{-1, +1\}$. Then there is a boundary link⁴ $L = K'_1 \cup \cdots \cup K'_n$ in H such that

$$\chi(H; (K'_1, \varepsilon_1), (K'_2, \varepsilon_2), \cdots, (K'_n, \varepsilon_n)) = H'$$

Then by the Casson surgery formula, we have that

$$\lambda(H') - \lambda(H) = \sum_{i=1}^{n} \varepsilon_i a_2(K'_i)$$

3 Surgery descriptions of knots and cyclic branched covers

Let $\varphi: M_K^r \to H$ denote the *r*-fold cyclic covering branched along *K*. We can compute $|H_1(M_K^r; \mathbb{Z})|$ from the Alexander matrix. Hoste showed the following:

Proposition 3.1 ([6, Theorem 3.2]). Let $\mathcal{D}K$ be the untwisted doubled knot about K in H. Then $\lambda(M_{\mathcal{D}K}^r) = \lambda(H) + 2a_2(K)$.

Recall that $\Delta_{\mathcal{D}K}(t) = 1$. Thus, we see that $\lambda(M_K^r)$ cannot be computed from $\Delta_K(t)$ in general.

Let $K \cup \ell$ be a link in H with $lk(K, \ell) = 0$. Let K^+ denote the preferred longitude for K. Namely $lk(K, K^+) = 0$. Then in M_{ℓ}^r , $\varphi^{-1}(K)$ consists of rcomponents. Let \bar{K} be a component of $\varphi^{-1}(K)$ which forms a knot in M_{ℓ}^r . Let $\bar{K^+}$ be the component of $\varphi^{-1}(K^+)$ corresponding to \bar{K} .

Put $\alpha_r(K, \ell) = \text{lk}(\bar{K}, \bar{K^+})$. This is an even integer⁵. If r' > (the wrapping number), then $\alpha_{r'}(K, \ell) = (\text{const})$.

For this Whitehead link $K \cup \ell$, we have $\alpha_r(K, \ell) = 2$ (r > 1). In general, $\Delta_{\bar{K}}(t) \neq \Delta_K(t)$ (even if $\alpha_r(K, \ell) = 0$, even if $K \cup \ell$ is a boundary link.)

⁴In [11], C. Lescop showed that when $\lambda(H') = \lambda(H)$ there is such a boundary link in H with $\Delta_{K'_{1}}(t) = 1$. See [8], [19] for more generalization of this result.

⁵Exercise: Relate $\alpha_r(K, \ell)$ to the Alexander matrix of the knot $\chi(K, (\ell, \pm 1))$.

 $\Delta_K(t) = 1$ (K is a trivial knot) and $\Delta_{\bar{K}}(t) = 1 + 2(t^{1/2} - t^{-1/2})^2$.⁶

Theorem 3.2. Any knot K in an integral homology sphere H has a surgery description $(k; (k_i, \varepsilon_i)_{i=1,2,...,n})$, where k is a trivial knot in S^3 and k_i 's are mutually disjoint knots in E(k), with the following properties:

- $\varepsilon_i \in \{-1, +1\}.$
- k_1, \ldots, k_N $(N \le n \ (N = n \text{ when } H = S^3))$ bound mutually disjoint genusone Seifert surfaces S_i 's in E(k) on which there are non-separating simple closed curves x_i and y_i such that:
 - $-x_i$ intersects y_i transversely in a single point,
 - $-x_i$ bounds a disk D_i with $D_i \cap S_i = \partial D_i = x_i$ which meets k in a single point,
 - $\operatorname{lk}(y_i, k) = 0.$
- Each k_j $(N < j \le n$ if $N \ne n$) bounds a Seifert surface S_j disjoint from k such that
 - $\operatorname{lk}(k, \ell) = 0$ for each simple closed curve ℓ on S_i ,
 - $-S_1, S_2, \ldots, S_n$ are mutually disjoint,
- $a_2(K) = -\sum_{i=1}^N \varepsilon_i \operatorname{lk}(y_i, y_i^+)$, where y_i^+ denotes the push-forward of y_i with respect to S_i .

⁶This contradicts the "statement" of [2, Proposition A.7].

• $\lambda(H) = \sum_{i=N+1}^{n} \varepsilon_i a_2(k_i).$

To illustrate usefulness of such a surgery description, we show the following:

Theorem 3.3. Let K be a satellite knot about a companion C, with the pattern (P, C_0) . When the winding number is zero,

$$\lambda(M_K^r) = \lambda(M_P^r) - r\alpha_r(P, C_0)a_2(C).$$

For the surgery description $(k; (k_i, \varepsilon_i)_{i=1,2,...,n})$, in M_P^r the r copies $(\bar{k}_i, \varepsilon_i)_i$ of $(k_i, \varepsilon_i)_i$ give a sequence $M_P^r \to \cdots \to M_K^r$. It is easy to see that $\operatorname{lk}(\bar{x}_i, x^+_i) = \alpha_r(P, C_0)$ and $\Delta_{\bar{k}_i}(t) = 1 + \alpha_r(P, C_0)\operatorname{lk}(y_i, y_i^+)(t^{1/2} - t^{-1/2})^2$.

4 Realization problem

Exercise 4.1. For any integer λ , there is a knot K in S^3 such that $\Delta_K(t) = 1$ and $\lambda(M_K^r) = 2r\lambda$ for any natural number r > 1. (Hint: Use Hoste's theorem (Proposition 3.1).)

As an application of Theorem 3.3, we have the following:

Proposition 4.2. Let r_0 be a natural number, and λ an integer. Then there is a knot K in S^3 such that $\Delta_K(t) = 1$, $\lambda(M_K^r) = 2r\lambda$ for any natural number $r \neq 1$, r_0 , and $\lambda(M_K^{r_0}) = 0$.

Problem 4.3. Let K be a knot in S^3 with $\Delta_K(t) = 1$ (or $a_2(K) = 0$.) Then $\lambda(M_K^r)$ is divided by 2r. (For unknotting number one knots with $\Delta_K(t) = 1$, this problem is true.)

Exercise 4.4. Let K be a knot in S^3 . Then $H_1(M_K^2; \mathbb{Z})$ has no elements of order two. Namely, the order of $\text{Tor}(H_1(M_K^2; \mathbb{Z}))$ is odd.

Exercise 4.5. Given a finitely generated abelian group G without elements of order two, there are knots K in S^3 with $H_1(M_K^2; \mathbb{Z}) = G$.

Exercise 4.6. Study the above propositions for 3-fold cyclic branched covers. $(H_1(M_K^3; \mathbb{Z}) = G + G, |\text{Tor}(G)| \text{ is odd.})$

References

- S. Akbulut and J. McCarthy, Casson's invariant for oriented homology 3spheres: an exposition, Princeton University Press, Princeton 1990.
- [2] C. L. Curtis, A Dehn surgery description of regular finite cyclic covering spaces of rational homology spheres, J. Knot Theory and its Ramifications, 10 (2001), 397–413.
- [3] A. Davidow, Casson's invariant for branched cyclic covers over iterated torus knots, Knots 90, Walter de Gruyter & Co., Berlin/New York (1992), 151–161.
- [4] S. Garoufalidis, Signatures of links and finite type invariants of cyclic branched covers, Contemp. Math. Amer. Math. Soc., 231 (1999), 87–97.
- [5] S. Garoufalidis and L. Rozansky, The loop expansion of the Kontsevich integral, abelian invariants of knots and S-equivalence, preprint.
- [6] J. Hoste, A formula for Casson's invariant, Trans. Amer. Math. Soc., 297 (1986), 547–562.
- [7] K. Ishibe, The Casson-Walker invariant for branched cyclic covers of S³ branched over a doubled knot, Osaka J. Math., 34 (1997), 481–495.
- [8] M. Ishiwata, A surgery description of an integral homology three-sphere respecting the Casson invariant, J. Knot Theory and its Ramifications, 10 (2001), 907–911.
- [9] A. Kricker, Branched cyclic covers and finite type invariants, J. Knot Theory and its Ramifications, 12 (2003), 135–158.
- [10] C. Lescop, *Global surgery formula for the Casson-Walker Invariant*, Annals of Mathematical Studies 140, Princeton University Press. Princeton 1996.
- [11] C. Lescop, On the kernel of the Casson invariant, Topology, 37 (1998), 25–37.
- [12] D. Mullins, The generalized Casson invariant for 2-fold branched covers of S³ and the Jones polynomial, Topology, **32** (1993), 419–438.
- [13] A. Némethi, Casson invariant of cyclic coverings via eta-invariant and Dedekind sums, Topology Appl., 102 (2002), 181–193.
- [14] Y. Ohyama, Twisting and unknotting operations, Rev. Math. Universidad Computense de Madrid, 7 (1994) 289–305.
- [15] D. Rolfsen, Knots and links, Publish or Perish, Inc, 1976
- [16] N. Saveliev, Lectures on the topology of 3-manifolds: An introduction to the Casson invariant, de Gruyter Textbook, Walter de Gruyter 1999.

- [17] H. Seifert, On the homology invariants of knots, Quart. J. Math., Oxford Ser. (2) 1, (1950), 23–32.
- [18] Ya. Tsutsumi, The Casson invariant of the cyclic covers branched over some satellite knot, in Proceedings of Workshop "Topology of Knots 6" 2004.
- [19] Yu. Tsutsumi and H. Yamada, Variation of the Alexander-Conway polynomial under Dehn surgery, Topology, to appear.
- [20] Yu. Tsutsumi, Surgery descriptions of knots and branched cyclic covering spaces, in preparation.