BRAID INDICES OF SURFACE-KNOTS AND COLORINGS BY QUANDLES

KOKORO TANAKA

Resume for "Workshop of Fledglings on Low-Dimensional Topology"

ABSTRACT. The braid index of a surface-knot F is the minimum number among the degrees of all surface braids whose closures are ambient isotopic to F. We give a lower bound of the braid index of a surface-knot using the colorings by a quandle. As an application, we determine the braid indices of S^2 -knots for infinitely many examples and give an infinite series of ribbon surface-knots of genus g whose braid indices are s + 2 for each pair of integers $g \ge 0$ and $s \ge 1$.

1. Surface braids

Please refer to S. Kamada's book [6] for details of surface braid theory.

Definition 1.1. (surface braid)

Let D_1^2 and D_2^2 be 2-disks and X_m a fixed set of m distinct interior points of D_1^2 . Let $pr_i: D_1^2 \times D_2^2 \to D_i^2$ be the projection map to the *i*-th factor for each $i \ (i = 1, 2)$. A surface braid of degree m (or surface m-braid) is a compact oriented surface Sembedded properly and locally flatly in $D_1^2 \times D_2^2$ such that

- (i) the restriction map $pr_2|_S: S \to D_2^2$ is a branched covering map of degree m,
- (ii) $\partial S = X_m \times \partial D_2^2 \ (\subset D_1^2 \times \partial D_2^2)$, and
- (iii) the branched covering $pr_2|_S$ is simple, that is, $|S \cap pr_2^{-1}(y)| = m 1$ or m for each $y \in D_2^2$.

Definition 1.2. (equivalence relation)

Two surface braids S and S' are said to be *equivalent* if there is an ambient isotopy ${h_t}_{t\in[0,1]}$ such that

- (i) $h_0 = id, h_1(S) = S',$
- (ii) for each $t \in [0, 1]$, h_t is fiber-preserving, that is, there is a homeomorphism $\underline{h}_t: D_2^2 \to D_2^2 \text{ such that } pr_2 \circ h_t = \underline{h}_t \circ pr_2, \text{ and}$ (iii) for each $t \in [0, 1], h_t|_{D_1^2 \times \partial D_2^2} = \text{id.}$

Definition 1.3. (closure)

Let S^2 be a 2-sphere obtained from D_2^2 attaching a 2-disk $\overline{D_2^2}$ along the boundary of D_2^2 . A surface braid S of degree m is extended to a closed surface \widehat{S} in $D_1^2 \times S^2$ $\left(=D_1^2 \times (D_2^2 \cup \overline{D_2^2})\right)$ such that

$$\widehat{S} \cap (D_1^2 \times D_2^2) = S$$
 and $\widehat{S} \cap (D_1^2 \times \overline{D_2^2}) = X_m \times \overline{D_2^2}$.

KOKORO TANAKA

Identifying $D_1^2 \times S^2$ with the tubular neighborhood of a standard 2-sphere in \mathbb{R}^4 , we assume that \widehat{S} is a closed oriented surface embedded in \mathbb{R}^4 . We call it the *closure* of S in \mathbb{R}^4 .

Theorem 1.4. ([4, 10]) Any oriented surface-link in \mathbb{R}^4 is ambient isotopic to the closure of a surface braid of degree m for some m.

Definition 1.5. The *braid index* of a surface-link F, denoted by Braid(F), is the minimum number among the degrees of all surface braids whose closures are ambient isotopic to F.

Remark 1.6. (Known results about braid indices)

- The braid index of the trivial *n*-component S^2 -link is $n \ (n \ge 1)$.
- Braid $(F) = 1 \iff F$: the trivial S^2 -knot.
- Braid(F) = 2
- \iff F: the trivial 2-component S²-knot or the trivial Σ_q -knot $(q \ge 1)$.
- Braid $(F) = 3 \implies F$: a ribbon surface-link. (it was shown that the other way does not hold.) ([5])
- There are infinitely many ribbon S^2 -knots with braid index 3 ([5]).
- There are infinitely many ribbon S^2 -knots with braid index 4 ([7]).

2. Quandles and colorings

Definition 2.1. (quandle)

A quandle [1, 2] is a set X equipped with a binary operation $(a, b) \mapsto a * b$ such that (i) a * a = a for any $a \in X$, (ii) the map $*a : X \to X$ ($x \mapsto x * a$) is bijective for each $a \in X$, and (iii) (a * b) * c = (a * c) * (b * c), for any $a, b, c \in X$. A function $f : X \to Y$ between quandles is a homomorphism if f(a * b) = f(a) * f(b) for any $a, b \in X$. For each element $a \in X$, the map $*a : X \to X$ is a quandle automorphism of X by (ii) and (iii), and we denote the inverse map $(*a)^{-1}$ by $\overline{*a}$.

Definition 2.2. (knot quandle and coloring)

For $n \geq 0$, let M be an oriented (n+2)-dimensional manifold and L an oriented ndimensional manifold embedded in M properly and locally flatly. Let N(L) denote a tubular neighborhood of L in M. Take a fixed point $z \in E(L) = \operatorname{Cl}(M \setminus N(L))$ and let Q(M, L, z) be the set of homotopy classes of paths $\alpha : [0, 1] \to E(L)$ such that $\alpha(0) \in \partial E(L)$ and $\alpha(1) = z$. A point $p \in \partial E(L)$ lies on a unique meridional circle of N(L). Let m_p be the loop based at p which goes along this meridional circle in a positive direction. The knot quandle of L in M, with the base point z, is a quandle consisting of the set Q(M, L, z) with a binary operation defined by

$$[\alpha] * [\beta] = [\alpha \cdot \beta^{-1} \cdot m_{\beta(0)} \cdot \beta]$$

When $M = \mathbb{R}^{n+2}$, we denote $Q(\mathbb{R}^{n+2}, L, z)$ by Q(L) briefly.

Let F be a surface-link and X a finite quandle. A coloring of F by X is a quandle homomorphism $c: Q(F) \to X$ from the knot quandle Q(F) to X. We denote by $\operatorname{Col}_X(F)$ the set of all colorings of F by X. Note that the number of the colorings, $|\operatorname{Col}_X(F)|$, is an invariant of the surface-link F.

3. Main results

Theorem 3.1. Let F be a surface-link which is not a trivial S^2 -link. Let X be a finite quandle of order N, where N is a positive integer. If the inequality $|\operatorname{Col}_X(F)| > N^l$ holds for some positive integer l, then we have $\operatorname{Braid}(F) \ge l+2$.

 $\mathbf{2}$

By using this theorem and Theorem 4.1, we determine the braid indices of S^2 -knots for infinitely many examples.

Theorem 3.2. For an odd integer $n \ge 3$, let K_n be the S^2 -knot obtained from an (n, 2)-torus knot by Artin's spinning construction. Then we have the following.

- (i) The braid index of an S^2 -knot $K_n(s)$ is s+2, where $K_n(s)$ is the connected sum of s copies of K_n .
- (ii) The braid index of a Σ_g -knot $K_n(s,g)$ is also s+2, where $K_n(s,g)$ is the connected sum of $K_n(s)$ and g copies of a trivial T^2 -knot.

Theorem 3.3. For each pair of integers $g \ge 0$ and $s \ge 1$, there exists an infinite series of ribbon surface-knots of genus g whose braid indices are s + 2.

4. LEMMA, PROPOSITION AND THEOREM

Theorem 4.1. ([7]) If neither F_1 nor F_2 is a trivial S^2 -knot, then the following inequality holds.

$$\operatorname{Braid}(F_1 \# F_2) \leq \operatorname{Braid}(F_1) + \operatorname{Braid}(F_2) - 2$$

Proposition 4.2. Let F be a surface-link which is not a trivial S^2 -link. Let α be the minimum number of generators of the knot quandle Q(F). Then we have $Braid(F) - 1 \ge \alpha$.

Let R_m be a quandle consisting of the set $\{0, 1, \dots, m-1\}$ with the binary operation defined by $i * j \equiv 2j - i \pmod{m}$, where m is a positive integer. The quandle R_m is called the *dihedral quandle of order* m.

Lemma 4.3. $\left|\operatorname{Col}_{R_m}(K_n(s))\right| \leq m^{s+1}$. The equality sign holds if and only if n is divided by m.

References

- R. Fenn and C. Rourke, Racks and links in codimension two, J. Knot Th. Ramifications 1 (1992), 343-406.
- [2] D. Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Alg. 23 (1982), 37-65.
- [3] S. Kamada, Surfaces in R⁴ of braid index three are ribbon, J. Knot Theory Ramifications 1 (1992), no. 2, 137–160.
- [4] S. Kamada, A characterization of groups of closed orientable surfaces in 4-space, Topology 33 (1994), no. 1, 113–122.
- [5] S. Kamada, Standard forms of 3-braid 2-knots and their Alexander polynomials, Michigan Math. J. 45 (1998), no. 1, 189–205.
- [6] S. Kamada, "Braid and Knot Theory in Dimension Four", Math. Surveys and Monographs 95, Amer. Math. Soc., 2002.
- [7] S. Kamada, S. Satoh, and M. Takabayashi, The braid index is not additive for the connected sum of 2-knots, preprint.
- [8] L. Rudolph, Braided surfaces and Seifert ribbons for closed braids, Comment. Math. Helv. 58 (1983), no. 1, 1–37.
- [9] L. Rudolph, Special positions for surfaces bounded by closed braids, Rev. Mat. Iberoamericana 1 (1985), no. 3, 93–133.
- [10] O. Ya. Viro, Lecture given at Osala City University, September, 1990

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES, UNIVERSITY OF TOKYO, 3-8-1 KOMABA ME-GURO, TOKYO 153-8914, JAPAN

E-mail address: k-tanaka@ms.u-tokyo.ac.jp