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Abstract

We study surface braid monodromies on a punctured disk by using a monodromy
system. It is shown that any monodromy system of a surface braid of degree 3 is
ribbon. Here we show that there is a non-ribbon monodromy system.

1 Monodromies on a punctured disk

Let D2 be a 2-disk and Σ be a set of n interior points in D2. Fix a base point y ∈ ∂D2.
For a group G, a G-monodromy ρ is a homomorphism

ρ : π1(D2\Σ, y) → G.

Two G-monodromies ρ and ρ′ are equivalent, denoted by ρ ∼ ρ′, if there exist a home-
omorphism h : (D2,Σ, y) → (D2,Σ, y) and an inner automorphism α : G → G such
that

ρ′ = α ◦ ρ ◦ h∗.

We often want to classify G-monodromies with some additional conditions under the
equivalence ∼. For example, Lefschetz fibrations on a sphere with G: the mapping class
group on a closed surface. ([2]) or algebraic curves in a projective plane with G: the
m-th braid group. ([3]).

To study monodromies easily or systematically, we use a Hurwitz generating system H =
(η1, η2, . . . , ηn) of π1(D2\Σ, y) which satisfies the following conditions:

• each ηj surrounds one puncture in a positive direction (see the following figure);
and

• η1 · η2 · · · · · ηn = [∂D2].
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A G-monodromy system is an n-tuple

MS(ρ,H) := (ρ(η1), ρ(η2), . . . , ρ(ηn)) ∈ G× · · · ×G.

A Hurwitz equivalence is a equivalence relation on G × · · · × G corresponding to the
equivalence of monodromies, which is generated by the following relations:

(ξ1, . . . , ξj , ξj+1, . . . , ξn) ∼ (ξ1, . . . , ξj+1, ξ
−1
j+1ξjξj+1, . . . , ξn),

(ξ1, . . . , ξn) ∼ (β−1ξ1β, . . . , β−1ξnβ),

where j = 1, 2, . . . , n−1 and β ∈ G. If monodromy systems MS and MS′ are Hurwitz
equivalent, we denote it by MS H∼ MS′.

Theorem 1 Let ρ and ρ′ be G-monodromies and H and H ′ are Hurwitz generating
systems. Then

• ρ ∼ ρ′ if and only if MS(ρ,H) H∼ MS(ρ′,H),

• (ξ1, . . . , ξn) = MS(ρ,H ′) if and only if (ξ1, . . . , ξn) H∼ MS(ρ,H).

2 The surface braid monodromy

Let D2
1 ×D2

2 be a 4-disk and Xm be a set of m-interior points in D2
1. A simple surface

braid of degree m is an oriented compact surface S embedded properly and locally flatly
in D2

1 ×D2
2 which satisfies the following conditions:

• the restriction map pr2|S : S → D2
2 is an m-fold branched covering map,

• ∂S = Xm × ∂D2
2, and

• ](S ∩ pr−1
2 (y)) ≥ m−1 for any y ∈ D2

2.

We denote a set of branch points in D2
2 by Σ(S). By the condition about ∂S, the number

n of elements of Σ(S) must be even. For each y ∈ D2
2\Σ(S),

pr1(S ∩ pr−1
2 (y)) ⊂ Int(D2

1)

is a set of distinct m-points in the interior of D2
1. Thus we get a homomorphism

ρS : π1(D2
2\Σ(S), y0) → Bm,

called a surface braid monodromy of S, where Bm is the m-th braid group given as the
following way : for each closed curve γ in D2

2\Σ(S), we define the closed curve γ̃ in the
configuration space of unordered m-interior points of D2

1

γ̃(t) := pr1(S ∩ pr−1
2 (γ(t))).

The fundamental group of this configuration space is isomorphic to Bm. Now we consider

monodromy system MS(ρS ,H) = (ρS(η1), ρS(η2), . . . , ρS(ηn)) ∈ Bm × · · · ×Bm. We say
that MS(ρS ,H) is ribbon if it is equivalent to a system (ξ1, . . . , ξn) such that ξ2j−1ξ2j =
idBn

for each j = 1, 2, . . . , n
2 . We say that a surface braid is ribbon if its monodromy

system is ribbon. Here note that if a surface link has a closed surface braid presentation
whose braid is ribbon, then the link is ribbon. However it is not known whether the other
way holds or not. We have the following on the ribbonness of a monodromy system.
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Theorem 2 ([1]) Any monodromy system of a surface braid of degree 3 is ribbon.

Now let ϕ be a map from Bm to (Z2)moSm given as follows and let π be the projection
map from (Z2)m o Sm to Sm , where Sm is the m-th symmetric group.

ϕ(σi) =




Ii−1

0 1
t 0

Im−i−1


 =




Ii−1

1 0
0 t

Im−i−1


·




Ii−1

0 1
1 0

Im−i−1




Observing surface braid monodromies by using homomorphism s = π · ϕ, we obtain the
following theorem. As a corollary of the theorem, we can show that there is a non-ribbon
monodromy system.

Theorem 3 Let MS(ρS ,H) = (b1, · · · , bn) and MS(ρS′ ,H
′) = (b′1, · · · , b′n) be ribbon

monodromy systems. If (s(b1), · · · , s(bn)) is Hurwitz equivalent to (s(b′1), · · · , s(b′n)), then
(ϕ(b1), · · · , ϕ(bn)) is Hurwitz equivalent to (ϕ(b′1), · · · , ϕ(b′n)).

Corollary 4 If p ≡ 2 and q ≡ 2 (mod4), then a monodromy system (b1, b2, . . . , b8) is
non-ribbon.

b1 = 232, b5 = 1p4q2324q1p

b2 = 3 23, b6 = 1p4q3 234q1p

b3 = 1p3231p, b7 = 4q3234q

b4 = 1p2 321p, b8 = 4q2 324q

References

[1] S. Kamada, Braid and knot theory in dimension four. Math. Surv. and Mono., 95.
Amer. Math. Soc., 2002.

[2] Y. Matsumoto, Lefschetz fibrations of genus two— a topological approach. Topology
and Teichmüller spaces (Katinkulta, 1995), 123–148, World Sci. Publishing, 1996

[3] B. Moishezon; M. Teicher, Braid group technique in complex geometry. I. Line ar-
rangements in CP2. Braids (Santa Cruz, CA, 1986), 425–555, Contemp. Math., 78,
Amer. Math. Soc., 1988.

3


