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PREFACE

This is a collection of lecture notes and resumes for the mini-workshop ‘Work-
shop of Fledglings' on Low-dimensional Topology’ held at Osaka City University
during January 30 — Febrary 2, 2004, as a part of the 21st century COE program
” Constitution of wide-angle mathematical basis focused on knots” (Akio Kawauchi,
the project reader).

This workshop was organized principally for Post Doctors and Doctor course
students studying Low-Dimensional Topology and its related topics. It was the
main aim of the workshop to provide them opportunities; to introduce and discuss
their recent results each other, and; to make and deepen their friendship.

The workshop consisted of 4 half-days lectures and 10 short talks. The partici-
pants were 45 or more, and there, a lot of animated discussions have been done.

The organizers primely would like to thank all speakers for providing interesting
talks and for preparing well-written resumes. They also thank to Tomomi Murai,
Yuki Tadokoro, Tatsuya Tsukamoto, and Reiko Shinjo for their support to produce

this collection of notes.

Organizers:

Kazuhiro Ichihara (Nara Women’s University, JSPS Research Fellow)
Takuji Nakamura (OCAMI, Osaka City University)

Ryo Nikkuni (Waseda University, JSPS Research Fellow)

'fledgling 1. A young bird that has recently acquired its flight feathers. 2. A young or

inexperienced person.
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January 31
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18:30—

PROGRAM

Teruhisa Kadokami (OCAMI, Osaka City University)

How to use the Reidemeister torsion

Nafaa Chbili (Tokyo Institute of Technology)
Invariants of freely periodic knots
(under the joint auspices of OCAMI, room 3153)

Teruhisa Kadokami (OCAMI, Osaka City University)

How to use the Reidemeister torsion

Kazuhiro Ichihara (Nara Women’s University, JSPS Research Fellow)

Pseudo-Anosov braids on the 2-sphere

Naoko Tamura (Tokyo Metropolitan University)
On the A-polynomial of a knot

Ryosuke Yamamoto (Osaka University)

Legendrian curves on fiber surfaces

Tetsuhiro Moriyama (University of Tokyo, JSPS Research Fellow)

On the configuration space of points and the Casson invariant
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February 1
10:00—10:30 Yukihiro Tsutsumi (Keio University, JSPS Research Fellow)
A surgery description of homology solid tori

and its applications to the Casson invariant

10:45—11:15 Norihisa Teshigawara (Tokyo Institute of Technology)

On the Khovanov invariant for links

11:30—12:00 Eri Hatakenaka (Tokyo Institute of Technology)
Invariants of 3-manifolds formulated on their presentations

given by 3-fold branched covering spaces over the 3-sphere

13:30—18:00 Takahito Kuriya (Kyushu University)
A proof of the LMO conjecture

February 2
10:00—10:30 Kokoro Tanaka (University of Tokyo)

Braid indices of surface-knots and colorings by quandles

10:45—11:15 Isao Hasegawa (University of Tokyo)

Monodromies on a punctured disk

11:30—12:00 Takashi Makino (Kobe University)

Delta-unknotting numbers and the Conway polynomials of knots

13:30—17:30 Ryo Nikkuni (Waseda University, JSPS Research Fellow)
Delta link-homotopy on spatial graphs
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How to use the Reidemeister torsion
Teruhisa Kadokami (OCAMI, Osaka City University)

Reidemeister torsion OF| A&
KBRAZ K% JEger Lo &
FiE R®A

ABSTRACT. Firstly, we give the definition of the Reidemeister torsion, and
explain basic properties, following V. G. Turaev. Secondly, we consider the
Reidemeister torsion of a homology lens space, which is the result of p/g-
surgery along a knot K in a homology 3-sphere . We denote the homology
lens space by X(K;p/q). Main Theorem 1 is the case that K is a torus knot in
S3. Main Theorem 2 is the case that the Alexander polynomial of K, A (),
is degree 2. We judge when the homology lens spaces are homeomorphic to

lens spaces by using the Reidemeister torsion.

Abstract

1935 4F, K. Reidemeister [20] |3Pf 3 IRI7CZ AR I L T torsion invariant % &
#2L T, 3RJC lens space Z 8IS L /2. 2 @ invariant %38 % 1% Reidemeister
torsion & M5, W. Franz [6] 1Z—f%IKIcD lens space X 0FAL 7=. 1LV torsion
invariant % F W2 D728, Z OBMBAEGER R EBRSRO FI > T b, Fa D
1 ORERIE. 0 Franz OFEBEZICH L T b, Z 0N ERIE. B L FIH S
nNTuwineBbhs. Franz OFEHEOZEICIE L BROHERmMH 6N TWT, 3k
FEREO SR  BER OBURINVEL 22> TE TV AFHENOFR T, ZoAC— b &
IR0 TS EEDH HREEA D .

1962 4, J. W. Milnor [14] I& Reidemeister torsion & Alexander polynomial @
R BAR 2R L /2. V. G. Turaev [24], [25], [26] 1% 1976 4E2> 5 O—H DL T,
R CW 4K D Reidemeister torsion Z & L. $HlC 2 237 b 3IRITTE RIS
LT LWEREAREZ S A .

BIEIE, V. G. Turaev IZ9¢ > T Reidemeister torsion & %E#s L. FARMZFHE AKX
5% %. ARElE. homology theory IZ51) % Mayer-Vietoris O EHIRIGT 2 YIBR
BN Reidemeister torsion {x L COVNIDZ & ThHhD. 72721, Dehn surgery
SAFHRMEDSAAY, Heegaard 73R & 1IAMEDS D £ 0 L <2 LI3EBL TBL. &
7% 5. Reidemeister torsion 2% 0 T2\ /2 D MESLMT Euler number 780 TH
LN THS.

1%, homology lens space ICHYZ#% - T, Reidemeister torsion ODfEZ D H D
% R T & lens space @ Reidemeister torsion D& —T 5 E I &k BT <.
—3T 5 & X% lens space type LTEFRT H. YHEZTOH D% BT L7 OFEKRIZA,

9



EOFRITE L FHHICTE 207208 2 ORR SN FF-TEle & Zhon
G CANE D D OYIENESN & ¥ L. Homology lens space @ Reidemeister torsion
DT EIAEZES DT, HIRMSE QSRS e AREUR) (2B & AR GR
DFENLENC 5T D, LPLEEDL PSS L TERRLAEZEIETETH
NS, S (ZofEEREEL ) ftho A4 OFIC & > THOL LSV DIEHAR S
NoZ ezl Thb.

SO 4 OFERIL, HEEL R 2 FIRIC K - TR S WK R R 2 Reide-
meister torsion TREL T LD THL. ZNIFKREL 320B-NHS. 1D
HiZ. Reidemeister torsion @ invariant & L COYNKERL LD THSL. & H
WO ? ZNRETL RO 22 DG, bARaY—IlB % MITFE e
HHFEOBMRE LT A TFRIIESEE RO E 2R > NS 7208 (FHI, B S
%o HREERIEIC L /2 invariant 13) . JEEIER LM TAENTATL T B EEH
HLHOT, BV, FEER invariant FEZEEERE VD KO EHEROEE 2B 9
&I HMENDH 5H DT, Reidemeister torsion |TEZEE S L ToEREZH-TY 5
WEWERDRH L. 3 DHIFE. L UREELR invariant OFBEREE LRIET 5 TH A
HIETHD.

Ba2 0% 1 ofERIE. L. Moser [16] (1971) 1C & % torus knot |33 - 7= rational
surgery OFER D LRRE D547 5780 % Reidemeister torsion TEIERJ % . Lens space
VR L TR & & ff 5 T 7z Reidemeister torsion |, 2 @ homology lens space
IR LTS L DR TN Z LA%hh 5. L LIEZERR S L TiE (B R
AR T) Btk 56N 5.

52 OFEFIE. AF-SFHEN [7] (2000) 12 &k A FERO—ERTH 5. genus 1 knot K 12
- 7= surgery OFERAY lens space 1272572 6 1E, K 1T trefoil ThHbH, LW HFERD
BaR%E9 5. Fald k2 @ Alexander polynomial % #52 knot K Iy 9 surgery
DFETAY lens space type @D & &, K @ Alexander polynomial 785t —t+1THoL 2
L&l

551 OFER DI Franz OFEFE % (v, 55 2 ORFROGEINIAEAEL D /L 2
ZRALZ. IS OFEF TN TIVLERO AR 2> T b, RIS DLk &
IO 21T 7z (GENEEPROG IRRN=UFBIR) FREFLECLANESZ LK - Tn
%. %7z, Ozsvath-Szabé OfEH [17], [11] (2003) & ORAR L BUKDH L CH 5.

3 YK7T lens space D FATEIE O FIFERALE [1], [19]. simple homotopy X Whitehead
torsion 12 2WTUE [3], [15], [30]. twisted Alexander polynomial IZ2UWTid [28] %
SEIhzn.

10



0. Statement of Main Theorems

Terminology

1. Definition of Reidemeister torsion
1.1 Reidemeister torsion of chain complex
1.2 Reidemeister torsion of CW-complex
1.3 Milnor torsion and the Alexander polynomial

1.4 Examples

2. Rational surgery along a torus knot
2.1 Moser’s Theorem
2.2 Main Theorem 1

3. Rational surgery along a genus 1 knot
3.1 Goda-Teragaito’s Theorem
3.2 Cyclotomic polynomial
3.3 Main Theorem 2

4. Generalizations and Applications
4.1 Ozsvath-Szabé polynomial
4.2  Generalization of Main Theorem 1
4.3 Generalization of Main Theorem 2
4.4 Rational surgery along a pretzel knot

4.5 Application to Fox’s Theorem

(Bz0) ERoFEIT, 1 EITE L T8I, 3EEIT I RIA L OROBBATL .
TREFLEFICH L OO TL N, ABTREETHD 5 WITEITTFEOmEMH 5720
IS, HZFSETOEREEET. BIEETTFO L 10 1CH Y ETOT, TH6%2S5
FBL T Z&wn,
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0. Statement of Main Theorems
P OREEI ISR T 5. B e 2o 2 EH L I A D 2 D DFERE RS .

Theorem (Moser [16]; Gordon [8]; Shimozawa [23]) Let K, s be the (r,s)-torus
knot in S3, and M = S3(K,s;p/q) the result of p/q-surgery along K, s where
Ipl, 7], |s] > 2 and g # 0. Then there are three cases :

(1) If |p — qrs| # 0, then M is a Seifert fibered space with three singular fibers of
multiplicities |r|, |s| and |p — qrs|. In particular,

(2) if []p— qrs| =1, then M is the lens space L(p,qr?) (Figure 1).

(

3) If [p—qrs| =0 (p/q = rs), then M is the connected sum of two lens spaces,
L(r,s){L(s,r).

M L(59 '1)

FIGURE 1. the result of surgery is a lens space

Notation ( ) )
tr—1)(t—1
D —1) ((r,s) =1),

22T (rys)ldr & s DA AERT. (rs)=11Fr & sBENIHRENDI Z L&
ThHs.

Ay s(t) =

Main Theorem 1 Let K, s ((r,s) = 1) be a knot in a homology 3-sphere ¥ with
its Alexzander polynomial A, s(t), and M = X(K, s;p/q) the result of p/q-surgery
along K, s where |p|,|r],|s| > 2 and ¢ # 0. Then M is of lens space type if and
only if the following (1) and (2) hold.

(1) (p,7) =1, and (p,s) =1, and

(2) r ==£1 (mod p) or s = £1 (mod p) or grs = £1 (mod p).

Theorem (Goda-Teragaito [7]) Let K be a genus 1 knot in S®. If a rational surgery
along K yields a lens space, then K is the trefoil.

Notation A, (t) :=n(t—1)2+t=nt> —2n— Dt +n (n #0).
12



Main Theorem 2 Let K be a knot in a homology 3-sphere ¥ with its Alexander
polynomial Ak (t) = A, (t), and M = X(K;p/q) the result of p/q-surgery along K
where |p| > 2 and ¢ # 0. Let d (> 2) be a divisor of p, &4 a primitive d-th root of
unity, Vg : Zt,t7/(tP — 1) — Q(£4) a homomorphism such that 14(t) = &4, and
7%4(M) the Reidemeister torsion associated to 4. Then the following (1) and (2)
hold.

(1) If n < —1, then 7% (M) is not of lens space type.
(2) If |n| > 2 and d is a prime number, then T7¥4(M) is not of lens space type.
ZHIS KV LARE NS,

Corollary In the same assumption as Main Theorem 2, if M is of lens space type,
then
Agt)=t*—t+1 (n=1).

ZNUTAW-SHEN [7] ORERORBAIRIRIC A > T AT ® Ozsvéath-Szabé
[17] DFERDO—FROILEFRL LT 5.

Theorem (Ozsvath-Szabé [17]) Let K be a knot in S, and M = S*(K;p) the
result of p-surgery along K where p is an integer. If M is a lens space, then the

Alexander polynomial of K is the following form
A (t) = (1) + Y (D)™t + 1),
j=1

where 0 < §1 < S < +++ < Sy

13



‘ Terminology ‘ (FAR & 705 HGESE)

. |Reidemeister torsion| (1(C.), m%(C,), 7(X), 7?(X)) : HLE R L finitely gen-
erated free chain complex C, M5 E % invariant D Z & &5 . 55T 7(C,) &
#7. EIT R OREDOICTH L. EFENFHE T E S L IR A IR 240 5.
B% R ¥ integral domain TH L HAMRWGH . B R SEHELIC W &3, R
B ¢ : R — ROCHIREL 72 invariant 7%(C.) Z5HET 2 0k, AGEHEOHF &
LTI =y THDLH. 22T, R T invariant WETELHWIERTHL. ZOfED
Reidemeister torsion & V9.

ZEfE D Reidemeister torsion |, finite CW-complex X Ik L TEHZEINDL. X D
cell decomposition 75 @ H A7 chain complex WEFET 5. T30 6 Reidemeister
torsion ZEETH DLW, F 9 TlEe< T X D472 covering space X D
cell decomposition 7> 5 @ HPA7: chain complex @ Reidemeister torsion % 5157 5.
A TIE X & L CIE, maximal abelian covering 8-> C< 5. H = Hy(X;Z)
73 covering transformation group 12729, X 75 @ chain complex C,(X) ICb H
DFEMER L. Z[H]-chain complex & R7Z2¥%. Z @ Reidemeister torsion % X O
Reidemeister torsion & L T, 7(X) &R T. FEERIFRERE ¢ : Z[H] — R IZ{IhE
L7z (X)) ICL2R W e RO H HENHTEIC v, 2L T, 2O invariant ICIEH
MENDH L. +p(H) Oo5HIER CEE R722 9. Alexander polynomial Ak (¢) 12
" OB HENDH LD LR UHMEATH L. AGHFEHTIE, S6IC BEh-aHE"
WHDHeEIERHL, BRL T,

o ‘Homology lens space‘ (M = X(K;p/q)) : MEAHTATHEPH 3 IRIcZhRiK M 70
homology lens space T&H b &1, Hi(M;Z) WERRKEFE Z/pZ O & Xh 5. KRG
HTIEp>2, p#oo BRNETS.

{175, homology lens space M 1%, #47% homology 3-sphere ¥ [N D347 knot
K 3B - 72087 p/g-surgery OFERE L TRT Z &M TESLH. 22T |p| > 2,¢#0.
BT M = S(K;p/g) L RT

o ‘Lens space type ‘ : Lens space L(p,q) ® 1{R7cRERY —FOERRtE t £ T 5.
2%V, H=H(L(p,q);Z) = (t) = Z/pZ. {& & 1 DFhg dFARE TH. 2 27T,
d (> 2) 13 p O WERR g : Z[H] — Q&) % Ya(t) = Ea P HREL VDT
5. ZoeE, Vi(Lp,q) = (&a—1)"HEI - 1)L THDH. 22T ¢qg=1 (modp).

CR1DOFEnFTRETH L X, B nRADE Q) DIt a A lens space type T
HoHLE a=2£"C-D)HE -7 ((i,n) =1, (j,n)=1) eEXIhbLx%
V9. alEd 5 lens space @ Reidemeister torsion DfEICZR 5.

Homology lens space M = X(K;p/q) ® 1iRjuhEQ Y —FOEN TR t &7 5.
2%, H=H\(M;Z)=(t) =Z/pZ. &, % 1 DFMdFARE T D, 22T, d(>2)

14




13 p ORVEL. HERIEY g : Z[H) — Q(&a) & a(t) = Ea P OREDLEDET L. 2D
LE WD dITKLTYH 7%4(M) ¥ lens space type THLH L&, M ZTObHD%
lens space type &> . b 1FX Reidemeister torsion Tl lens space & Dz % ¥E T
HIEMTCIROSHRIEL D ZETHD.

o [FBIIRLD ) L 1| (N () : K/Q % Q Lo Galois ik & 2. K 0
TTa®dQED /A Ngjgla) BLATD LD ICERT 5.
Ngigla)= ] ol
0€Gal (K/Q)
Z 2T, Gal(K/Q) 13 Galois kK K/Q @ Galois #f & T 5. a DFEyNEIAA % monic
ICL 728 EOEHIADONRTED £1 5107 > T b.

15



1. Definition of Reidemeister torsion

Reidemeister torsion OEFIL, VA2 ¥EH%Z L TH 5 finite CW-complex X
WL T En b, LAF. Turaev [25] ICfE> TEHKRT 5.

1.1 Reidemeister torsion of chain complex
UTFICH T BRI T L 2R OrR TERETRVLD (1£0) £75.

Definition 1.1. 3§ R @ chain complex C, 7* finitely generated &%, C; (i =
0,1,---,m) 7" finitely generated R-module T,

Om—1 Om—2 01 9o

C.: 0—-0C,, —— Cn_1

C Co—0

THbLeELRWND. C, M free 1E. C; (1 =0,1,--- ,m) 4T free R-module O &
TRV, C, M acyclic 13, C, WY exact sequence D & T& UV,
C. Macyclic <= H.(C.) = P Hi(C.) =0.
i=0
PAF Cold, LD e HmEo 0 2EMEL T,
Om—1 Om—2 01
Im-2, .

C* : Cm E— Cmfl

ERTZEYVHD.

o

Ch Co

FICER R LAFOMHE (x) iz THEE2EA TN

‘ (x) R _Eo finitely generated free module M @ basis ORI —5E.

¥ 9" M O basis DIREWERZDIIBHICONS. (BFEETRT I EMNTEDS)
() BT FRRLEL LT, ROLEIRLONH 5.

Proposition 1.2. [3] 28 R »* & integral domain K “\® homomorphism f : R — K
T flR) =1 2B LDOBHL & X, R (x) 2/ 7.

Proof R b ® finitely generated free module % M &9 %. M @ 2 DO basis
{xi}izl,---,m; {yj}j:l,-“,n %}Eﬁ%—g_é ZDe %\ m=n %ﬂf\‘“@:(iib\

=1

j=1

A - ( aij )izl,---,m ; j:l,---,n, B = ( bji )jzl,---,n s i=1,---,m
BEHSTHITH L. 2. AB =1,,, BA =1, (I,, I, X m k. nIROHENAITH)
2D

fIn) = I, f(In) = In £ 9. f(AB) = f(A)f(B) = L, f(BA) = f(B)f(A) =

I,.
16



K Ok Q(K) COR UBRRDT, m=n. O
Corollary 1.3. [3] group G C/ERKT % group ring Z[G] 1% () Z{mi/z 7.
Proof G ®5t% 1B THERAY f : Z|G] — Z »* Proposition 1.2 O %24#i/=9. O

IFICHITL B3 2T (») ke ¥ 295,

Notation (1) B8 R _L® free module M O basis DiRE %, M @ dimension F 7z
V& rank &0 dimg M (dim M) £7z13% rankg M (rank M) &3 9. (Turaev (3.
tkpM (rk M) &F&RL Tnb.)

(2) M @ 2 D®D basis # b = (by,b2,-+-,b.),¢c = (c1,¢2,-+ ,¢.) €T 5. T IZT.
r = rank M.

bi:zaij'cj (i=1,---,r) &b ay €R(i,j=1,---,7) PWFET 5.
j=1

A= ay )MZLM’T £¥5eE. [bje]i=det(4) £ T 5.
r=00r I [0/0) =127 %,
ZOLELUTFAbAS. be,d % free module M 0 basis ¥ T 5.

@ [b/e] ¥ ROERTETH 5.

® [b/c} : [c/d} - [b/d]

® [b/b} —1, {c/b} - {b/c}_l.

@ ROEHGTu & ¢ NEA BN X, [b/c} —u &% b WEET 5.

ONONOIASUN {b/c} =1 D& X, bk cldequivalent L EFT 5 L. [FMEH
fRic 5.

(3) b" = (b1,b2, -+ ,byp),b" = (bpry1,--+ ,bp) DEE, b =Dbb" = (b1,ba, -+ ,b;)
&R

Definition 1.4. (Reidemeister torsion of a chain complex)

Om—1
-/,

C.: o, Chi Om—z % C, % Co

Z{K F _E o finitely generated free chain complex & 9 %.
C; @ basis ¢; = (M- ) (i =0, ,m) EEEL. c=(co, - cm) &T
5He, 2L C, D basis TH 5.

Zi = Ker (81-_1), Bz :=1Im (81), Hz = Hl(C*) == Zz/Bz
17



EBL(i=0,---,m). ZD&E,
Ci=2Z;®Bi_1 =B, ® H; ® B;_1.

B; @ basis b; = (01", -+ |9, H; o basis by = (BV, - ") W5, by o
01 1 kB lift % by bR L. by OERBES Z — H, 10 k5 lift & by b =T L,
J:U)lﬁﬁfﬁ(ﬂm:ck U‘ bifliBi_l f)i‘ Ci @ basis %E}Zj— ZDE %‘
m s (=1)it!
T(C*;C) = H [bzhzbzfl/cz} )
i=0
% C, D Reidemeister torsion £EFZT 5. 2T F — {0} Dt TH L. c WAL
ImEEIFT(Cy) ERT.
7(Cy) ZRODLERCHMEZ EGERIIUAT TH .
@ c DHLY T @ b WY J;. ® h oY 7.
@ b OHLY F. ® h OHLY F.
EOHFRMMENEOAHE L AT OIS L TH L.

[(DIC2WT] C, DHID basis & ¢’ &5 &,

7(Ci;c) 1 (=1t
"Gy~ LI

T, SHUEF - {0} Dt bWV AEL. 2006, ¢ OEY O HHE L HERICERD
5 & invariant & L COEBREZ K S 7200,

—7. MOERITFEFIES TS,

Lemma 1.5. Let b; and h; be fized bases of B; and H;, respectively. Then the

equivalence class of biflif)i,l does not depend on lifts flz and f)i,l.

Proof p; = rank (C;), ¢; = rank (B;), r; = rank (H;) £ B<. pi=qi +7i +qi_1 P
| AVAS SR

hl, b_, % h;, bi_y OB ift &7 5.

b = (5", 0l%),

hy = (A", B B = (O ),

Bz_l = (6517)15 abgqjlil))a Bgfl = (6;(7%5 ;6;81171))a

=0 —hy= (Y, d"), e =Bl —biy = (e, el



qi
dy)==228ﬂb9)
kq;l .
ez(-j) = Z tjkbl('k) + Z ’U,jlill('l).
k=1 =1

S (o) 7= (10 ), 0= ()

i SR
I, O O
[biﬁgf);_l/bifuﬁi,l} =det| S5 I, O =1
T U I,
ey, mEhik. O

Lemma 1.6. Let h; be a fized basis of H;. Then the value 7(Cy; c) does not depend

on choices of b;’s.

Proof b} = (5" b)) % B, ®BlD basis & T 5.

i s qi—1
bgjl = t]k zbg ) + Zujl,ihz ) + Z S]m,l—leTl)
k=1 =1 m=1

Si:(sjk,i )7Ti:(tjk,i )7 Ui:(ujl,i)

eBe, ST xqgATHTC, So1 =S =(0). T3 1 qim1 xriAT8). Uil qi—1 X qs-
1751.

(71)m+1
S; O O
" ~ ~ -~ (_1 m+1 m
H [b;hib;—l/bz‘hibiq] = Hdet o I, O
=0 m S
= det(S_1) 7 det(Sn) V" = det(®) ! det(0) V" =1
L, REIN. _

PAED K212, 7(Cy;c) I e, h DY F1IZ & % invariant T 5. IRETTZERM S
@ Reidemeister torsion #E#% T 5 & &, clTHARLDICHA Z &M TET, HH
BELHIET L2 TESL. hbE®T7z Reidemeister torsion ZFH L 725w & L T,
[18] Z2k1F B L.

AR, fE8® i Trank (H;) =0. 2%V C, Macyclic (h=0) OFEOHLEFE

I2E 2 T <. C, M non-acyclic ® & E1d 7(C,) =0 LHIHT 5.
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(Caic) = [1[pbese] ) =0,
! (H.(C.) #0).

Example 1.7. (1) C.: LU Co

& F £ chain complex & L C. C1,Cy @ basis # ci,cq & T 5.
C. 7 acyclic <= 0y »® isomorphism.

0o M¥isomorphism & L T, ¢ = (Cgl), o 7C§T)), Co = (C(()l)v o aCE)T)) eB<.
Bo(el”) = > aiye) T o IR S A= (ay ) BIEARTAICH 5.
=1

B, =0, By=Cy, B_; =0.
B1 =0, By=Co &Y. by =0, by =cy,

bo = Cy, B,1 =0k @\ bo = (90(01), bfl = (Z)

[})150/01}(71)2 = [50(C1)/Co}71 [Cl/CJ

7(Cy;c) = {bofo_l/co}(
= (det A)~L.

@cC.: ¢ -2, o
(1) L FERERRED T, C, Nacyclic ®& X, 7(C,;c) = det A.

Reidemeister torsion O HEEOME—ICL TIHRROT V7 =y 7 L E-5TH Ly mul-
tiplicity 122 W Th R 5.

C,. #{k F Lo finitely generated free chain complex, C’ % % @ subcomplex.
C! = C,/C., % quotient chain complex & 9§ 5.

Om—1 Om—2 1%} 0
Ci: Cn —— Cpor —— -+ — O — Co
6/ 6/ a/ 6/
!, m—1 m—2 1 0
c,. c, —/— C_, T .. ! cl
- 02 o %'
c’: cr "L e —— 0 cy
ci,c, ¢l BXNhZTh C;,Cl,C!" D basis T, 2 DDE

t:Cl—=Ciy p:Ci—CY
CBIL CHAR b DL T 5. D%V, & k! Dplc kb lift & T5 & X,
(e fei] =1
WHALT L5005, LUFZhEHIZL TnbET 5.
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Lemma 1.8. If two of C,, C, and C” are acyclic, then the rest is also acyclic.
Proof LAF @ & 9 7% exact sequence 3% 5.

— Hi(C,) —— Hi{(C,) —— H(C]) ——
HAIE CL,C! Macyclic £ T5&. Hi(C,)=0,H;(C!)=072DT, H;(C,)=0
&b, DFD, C, b acyclic THLH. MOMAEETTELEKTH 5.
Lemma 1.9. If C,, C’, and C are acyclic, then there is the natural exact sequence

induced by t and p,

f

0 B! B, —— B/ 0.

Proof f,g ® well-defined 14 & chain @ exact Y% /17

Lit2 Pit+2
0 Cz{+2 — Cit2 —_— C{Q_Q — 0
6£+1l 6i+1l 61{;1l
Lit1 Pit+1
0 Cz{+1 — Cit1 —_— C{g_l — 0

i i |
0O —— Im(azl) (—>) Im(ai) (L) Im(al) — 0
inclusionl inclusion inclusionl

0 —— Ci LN C; NN cy —— 0

Step 1. f DEF L. T OHHHE.

o % Im(9) PIEBDICET L L, Cl, DitaPHFEL T, 2 =09)(a) £ TE5. Z
DEeE. f(z):=0;0u41(a) LTEFRTD.

o well-defined 4 :
CipaDtb%, 2 =20[0b) £%5bDLT 5. 0/(a—b)=0KLYD. a—beKer(d) =
Im (0j,,). a—b=0),,(c) &2 Cj L, DI c WHFETS. 0;otiy1(a —b) =
Di0tig100;,1(c) = 0i 0041 0ti12(c) =0 LV, dyortiy1(a) =0 0tiy1(b).
o [Ty DHIRZRDT, HETHD.
Step 2. g DEFK L. TOLHHE
oy & Im(0;) DIEEDTTET DL, Cip1 DIt aMFEHEL T, y=0i(a) £TELH. 2
DEE, gly) =0 opipa(a) LEFRT .
o well-defined 1 :
Cir1 DB, . y=0;08) 02 bDe35. 0;(a—p3)=0kLY. a—p € Ker(9;) =
Im (87;+1>. o — ,8 = i+1(7) &7&:6 Ci+2 0)77:’7 ﬁ\ﬁﬁ_'&é (9;/ Opi+1(0z — ,8)

0f opit1 0 0i1(7) = 0} 0 04y opira(7) =0 £ V. 8 o piyi(a) = 0] o pira(B).
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©g00; =0"opit1. OV pip1 FEHIRDT, god; 132G k-T. g b2H
Step 3. Im (f) = Ker (9) TH5H = &.

[Im (f) € Ker(g)]

* go f(x) =0/ opiy10titi(a) =0 &Y. Im(f) C Ker(g).

[Im (f) > Ker (g)]

eycKer(g) £75%. 0i(a) =y &5 a € Cipq BELD. godi(a) =0/ opis1(a) =0
. pisi(a) € Ker (9)) = Im (0. pira(a) = Blyy(z) E%% 2 € Clyy HFHET
5. Pigo W FRHLD T, pige(B) =2 L7405 B € Copo WHEIET 2.

e =a—0;11(0) LB &, 9i(d) =0i(a—0i+1(B)) = 0i(a) = y.

Pit1(a’) = piv1(a) — pit1 0 9ix1(B) = pir1(a) — 0741 0 piya(B).

az{/Jrl opiya(f) = aélﬂ(z) =pit1(a) £V, pipi() = piy1(a) = pigi(a) =0.
Nnkv, o €Ker(pir1) =Im (ti41).

oo = () &b d € Cl WHEIET S, = 0)(d) € Im (9)) £ BL & &,
flx)=0;0u41(d") = 0;(c)) =y 72DT, y € Im(f). O

Theorem 1.10. (Whitehead [30]; Turaev [25]) If C, or C is acyclic, then

7(Cy;c) = £7(C; c')7(CL5 ).

Proof C; TEA LD G N L EiE, oc]), ¢! & c),c/ LbERTZLITT L.

By, B, B} ® basis % by, b, b’ £ ¥ 5. Lemma 1.9 £ 0 [bi/bib]] =1 255,
Lemma 1.8 £ V. C, 2 non-acyclic THdHZ & &, C,,C! bl b—FN
non-acyclic TH A Z L LIFEMETH L. 2D & &, Wl 0 THESFHAL.
AR, C, »acyclic ZIET 5. C.,C” o—F% acyclic ® & ¥, Lemma 1.8 X

DY acyclic. - T32& Y acyclic.

m R (—1)it m ~n (=1)%H!
r(©uie) =TT [pbefe] " =TT i Beata et
i=0
—iH[ T B | | V] R AT
=0

% B!, B! @ rank b iE, + OFFEE CARETH 5.

‘ Changing coefficients ‘

Z N E T chain complex C, (3K F Z2{f8 & L T2y, IR 27 L 7556
LEZALNRETHDL. ZDL DR RIE Proposition 1.2 ODERGICH 550 (x) &l
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72T b D& T 5. B R A integral domain @ & Z1d, C,. @ Reidemeister torsion
LT, CLICEik Q(R) 27 > Y WVEE%Z L 7= Y @ ® Reidemeister torsion & Z &
ELTERTS.

7(Cy) :=7(Cy ® Q(R)) € Q(R)
—fRDER R 2387 5 & X1, integral domain R’ ~NDRUERTESH o : R — R’
1L > T, Ci®rQ(R') O Reidemeister torsion ® Z & & L TEFKRT 5.

7%(C.) = 7(Cx @r Q(R))

ERT.
Notation C{ := C, ®r Q(R'), H(C.) := H,(CY), 7¢(C,) := 7(C¥).
Remark 1.11. (1) 7%(C.) # 0% HY(C.) = 0 & [E/#.
(2) Euler #{ x(C.) #0 & &, 7%(C,) = 0.
Example 1.12. (1) C,: ¢, —2 . ¢

G=(|t3=1)=22Z/3Z, R=2Z[G] =Z[t,t /(> -1) T 5. C. & RIFH
® chain complex & L. c3 = (c§), ¢1 = (), 81(c?) = 2 + ¢+ 1)V v 5.

ZoneEKer(d) =(t—1)#(0) &V, C. DY DI non-acyclic ThH . R I
integral domain T2\ 2 & HyFEEL TH L.

CEL1DFMIFRE LT, 0 Z[G] - Q(Q) & (1) =1, p(t) = WORED
BRUERTE, ©:Z[G) - Q% (1) =y(t) =100 RE2BRERELTL. 0L X,
C? 13 non-acyclic. C¥ 13 acyclic T, 7%(C,) =3 ThH 5 I LMD HNL.

2 C.: ¢y 25 ¢ 2

G, R, p, 1L (1) AL DL T SH. C, T R{ZED chain complex T, ¢3 =
(e5), ez = (7)o = (), () = (¢ = 1)y, Du(h) = (12 + ¢ +
DtV 01y =12 = 1)l 252, Ker (8:) = (12 +t+1) £ (0) £V, C, ZDb
D% non-acyclic TH 5.

C? 13 acyclic T, 7¢(C,) = ¢ +1. C¥ ¥ non-acyclic Tdh 2 = LN HND.

PAEICTE Y, chain complex & ERUERIEDETIC L 5 T acyclic Pl K & <281k
THZERERL THEL.
1.2. Reidemeister torsion of CW-complex
Definition 1.13. (Reidemeister torsion of a CW-complex)

X % finite CW-complex. p: X — X % X @ maximal abelian covering & 5.
CoLE XI2E X o ERICTHEE SRS CW-structure 23A 5. % cell IC1E p
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covering transformation group H = H;(X;Z) ®7thWEH T 2 DT, chain complex
C.(X) 1% Z[H] Lo finitely generated free chain complex & R7Zet % (Figure 2).
BUERTE ¢« Z[H] — F IS8 LT, 7(Cu(X) @zim F) % X @ (p ITFHBEL 72)
Reidemeister torsion & €T 5.

Notation C{(X) := C.(X) @z F, Hf(X) = H.(CY),
T(CI(X)) e F—{0} (HI(X)=0),
(X)) =
0 eEF (HZ(X) #0).

T?(X) OEHEL (1) X @ basis DV &, (2) ZOAARHFITES. (1) 13 o(h)
&5 (he H). 2) 11 ffoBHEL24EL. UUIEICLY, Reidemeister torsion Off
F2(X) . (k) 5 (h e H) OB SR b TEES NS,

CW-pair (X,Y) Ik L T, 79(X,Y) = 7(CL(X,p~1(Y))) % (X,Y) ® Reide-
meister torsion £ EFT H. HHELFRETH L.

A
2"
A

A
he
N

X o

AP
FIGURE 2. the maximal abelian covering of X

Theorem 1.14. [25] Let (X,Y) be a finite CW-pair, j : ¥ — X the natural
inclusion, and ¢ : Z[H1(X;Z)] — R a ring homomorphism. If 79°7(Y) # 0 or
T?(X,Y) #0, then

(X)) =19(X,Y) - T¥7(Y).

Proof C, = C£(X), C, = C£7(Y), C!/ =C{(X,Y) £ B &, C'=C,/C, T
5. Theorem 1.10 &V, FRAZT 5. O

Theorem 1.14 HEZE/ZA, AT OUIRMEO LMWL VEETHS.

Theorem 1.15. (excision) [25] Let X be a finite CW-complex, X1 and Xo subcom-

plexes of X such that X1 UXo =X, andY = X1 N Xs. Let j : Z[Y] — Z[X] and
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Ji s ZIX] — Z[X] (4

= 1,2) be homomorphisms induced by the natural inclusions,
and ¢ : Z|H1(X;Z)] — R a ring homomorphism. If 7¢°7(Y) # 0, then

rE(X) = T (X) - TR (o) - ()

Proof C!, = C£(Y), C, = C£' (X;)@CP2(X,) = 22U (X 11x,), €7 =
CP(X) Bl L,

0 - C, —— o 2 oo - oo
I& Mayer-Vietoris exact sequence T& 5. Theorem 1.10 L V. K3z 7 5. O

FZZOREE T 79(X) 13 X @ CW-structure |CfJifi L 7z invariant TdH 5. U
D% simple homotopy invariant % T 5 Z LR T OMLULTFOERTH 5.

Theorem 1.16. [25] Let X and X' be finite CW-complezes, f : X — X' a simple
homotopy map, ¢ : Z|H1(X)] — R a ring homomorphism, and ¢ = ¢’ o f.. Then

’

7 (X) = ¢ (X).

Proof {1& ® simple-homotopy % elementary simple homotopy D745 [EF| THIEF
NEOT, FRX M5 X' NOD elementary simple homotopy & {fREL TRT. X D
(n—1)-cell e Z]K & LT, INFOE 2 15D cone Z5EAH Z LIC LY f 2T L
(Figure 3).

X

[/ > /&)

X X’

FIGURE 3. elementary simple homotopy

Theorem 1.14 LV, 7% (X') = 79(X) - 79 (X, f(X)). en = x5 e B L,
(X, f(X)) =79 (en, €) RD T, 7% (en,e) =1 ZRBIT L. BRI, n=3 D¢
E0HERT. ~ROGELFEKTH L.

) ) )
Cy —25 0y —25 ¢ —25 (¢

% CW-pair (e3,e) 76358 S 2 chain complex &9 5.
cs = (es), &= (5).657.e5”), @1 = (e ). e]”), co= () T B L%,
Bu(es)— o)+ P 4 0

01(e") = e e, 01(e) = e e, 01(e) = -
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do(e) = do(et?) = o () =
ZDLE, by=0, by=(e3), by = (da(e3)), 512(652)7653))7
by = (91(e5”), 01(e5))) = (ef? — ef’), e? — e, by = (),
by = (do(es”)), boy =0
YD EMTE, 79 (en,e) =1 EROOND. O

CW-pair (X,Y) @ Reidemeister torsion 7% (X,Y) & simple homotopy invariant
THDHZEFRRIORT Z M TE L.

Corollary 1.17. [25] The value 7% (X) is independent of subdivision.

Proof .04 % simple homotopy THEIHT 5. X % n kK5t CW-complex & T 5
73, simplicial complex & L UREIEFRDTH L. X @ i IRTCLAT D cell K% X;
YD, Feell DNEE 1 T O T &, X, MHJEICHS L T <.

Step 1. n-celle &z D cone zxe ZHY, £ (n+ 1)-cell & el 25
9. Zhid, simple homotopy TEIT 5 (Figure 4).

A-A-A-A

FIGURE 4. subdivision I

Step 2. IROEMET Figure 5 Ol % L7z, X Offir £ Tl D Fn e &, §
%ﬁ\%/b\xﬂﬂ FICTR 5T 5,

N~ -

FIGURE 5. subdivision II

Step 3. (a) ZFFL < R 5.

(n—1)-cell & ZHAET 2 cell k&, fHy LD cone ZELD, JEE (2 OEERK
TR HGE) W HIRTTOE L cell DIEICD 5L T < (Figure 6).

LABE B FIRIC L T <L O
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N N7 N7

—— —— —— —

~— @ 4___,,27

FIGURE 6. subdivision III

PAEIZE Y. Reidemeister torsion A% simple homotopy invariant THh 2 Z & &,
MO TARETHDLZ R, LML INTY cell decomposition 124 - Tvrb.
A. Chapman [2] lZLATF &R L 7.

Theorem 1.18. (Chapman [2]) Any simple homotopy invariant is a topological

mvariant.

Z OFEIICIE, BEIRIRTTONL R & v 5. S OIFEZBA T 5 O THAR
FHETH L. I ZOFERICE D, Reidemeister torsion I topological invariant
THoDHZ EMMFIES T,

22T, LABOFERICRA] R 2 2o f 227 THL.

Example 1.19. (1) X = S!

Hi(S') = (t) 2 Z, p: X — X % maximal abelian covering ¥ ¥ %. S' %, 1
D 0-cell cg. 12D 1-cell e ICHENT L. lift bELUFHEMFED 2 £127T 2 (Figure 7
(1)).

C.: ¢ —2~ G
% ST oHENSHES X (2 RY) @ chain complex & T 5.
c1 = (c1), ¢o = (co), Do(c1) = (t—1)co TH 5.
by =0, by = (c1), bo = (do(c1)) = ((t — L)co), by =0 &,

(S = (t—1)"!
(2) X =St x St

Hi(S'x SY) = (g,h) 2Z®Z,p: X — X % maximal abelian covering & ¥ %.
Stx St %, 12D 0-cell cg. 22D 1-cell cl,c2. 1 DD 2-cell ex IHENT 5. lift b
FRLREZMED 2 &1CT 5 (Figure 7 (2)).

o1 60

C,: Cy

Cy Co

% St x ST oHENDSHE S X (2 R?) @ chain complex & 5.
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¢z = (c2), €1 = (cf,¢f)eo = (co),

di(c2) = (1 = h)ej + (9 — 1)ed,

do(ci) = (g — Deo, do(c}) = (h—1)cg TH 5.

by =0, by = (c2), b1 = (di(c2)) = (1 = h)el + (9 — 1)e}), bo = (c}),

by = (do(c})) = ((9— 1co), b1 =0 &V,

(S x Sh) = 1.

(1)
€1 tZCO
P tg
~— tcy
Cq )t-
Co
Co '
(2) H H
p
CO D) <—rl,f @
C]
..CO. p | --
g.

FIGURE 7. the maximal abelian coverings of S* and S! x S*

Proposition 1.20. (1) Let t be a generator of H1(S'), and ¢ : Z[t,t™'] — R a ring
homomorphism. Then C£(S1) is acyclic if and only if p(t) — 1 is not zero divisor

in R. If C£(SY) is acyclic, then 7%(S*) = (p(t) — 1)~ L.

(2) Let ty and ty be generators of Hy(S' x SY), and ¢ : Z[tF',tFY] — R a ring
homomorphism. Then C£ (St x S1) is acyclic if and only if p(t1) — 1 or ¢(t2) — 1

is not zero divisor in R. If CZ(S* x SY) is acyclic, then 7% (S x S1) = 1.

Example 1.21. (1) ¢ : Z[t,t71] — Z[s,s7]/(s" — 1) & o(t) = s T F L ERUER
FEedsb, (s—1)E" 4 +s+1)=s"-1=0&0. pt)—1=s—11%zero
divisor TH 5.

(2) ¢ Z[t,t7] - Q) & ¢(t) = ¢ CHRFEL|RERIE LT 5. 22T, ClF1 D

An TR TH L. o(t) — 1= — 113 zero divisor TlE7ZeL>.
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(3) p: Z[t,t7/(t" —1) = Q(C) & o(t) = ¢ THRELBRERIE L TH. 22T, ¢
1 DFBEn TR THS. o(t) — 1 = (¢ — 11 zero divisor TIEZRL.

(4) Ya 2 Z[t,t71]/(" = 1) = Q) & u(t) = ( THRELBRERE LT L. 22
T, (1 DFHBAFERTH L. d (> 2) D8 n OO L F g 1T well-defined C,
Ya(t) —1 = ¢ — 1 1% zero divisor Tl7eL>.

1.3. Milnor torsion and the Alexander polynomial
Z OENFEARMICEER 2 5 A 2. GEFRIE Turaev [25], [26], [27] S0 2 &,

Definition 1.22. (Milnor torsion)
X % finite CW-complex & L. H := Hy(X), G := H/Tor (H) £ 5<. pr :
ZH| — Z[G) x B e 5. 2oL &, 7P (X) % Milnor torsion £ €T 5.

Z|G] ¥ integral domain T& 5.

Definition 1.23. (Fox derivative)
Fi= (21, ,xm) & 21, -,y CHEKT D free group £ 5. fFED r € F &
Z[F) ®FT

r=14) filz =1 (f € ZF)

EEINICRINDG. ZOLEDE f; &
or
ﬁzag
ERT. ZLT IhE ZIF) IHERL 72 D % Fox derwative & EFKT 5. D%V,
0

5o 2 = 2l

&
W) reForx <i)(r)— Or

amj - 6xj’
9 ou ov
=q—— + b—
(2) a,beZ, uveZlF]OLE (ax)(““*b”) “oz; T ox;

TEDL. 2oL LLFPRAZT 5.

Oc
N Oc 7
(i) o, 0 (ceZ),

8zi
(ii) = 0yj (045 1 Kronecker @ delta),

ij
..., O(uv) Ov ou

= U— e 1) — ZIEF

(iii) oz, uazj +o(l,---, >8xj (u,v € Z[FY]),
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or—t 1 Or
i =—r — F).
(iv) o7 r oz, (reF)

Definition 1.24. (Elementary ideal, Alexander polynomial)

F = (z1, - ,xy) & free group. m = (@1, , & | 1,72, ) % finitely gen-
erated group £ 9 5. p: Z[F] — Z[r] % natural projection. « : Z[r] — Z[H] %
abelianization 73589 5 homomorphism., n =aop & T 5. ZD& X,

a’m‘
A(r) = < n <6xj> )i_l,__.; j=1,-,m

Z m @ Alexander matriz £ > .
A(m) @ (m—1)IMTHIRTER I NS Z[H] @ ideal E(r) % m O elementary ideal
Znby,

A(m) = ged(pr (E()))
% 7w O Alexander polynomial £ > . %7 @ presentation I & 5 T —EMICH $
BH. 2120, A(n) & tpr(h) (h€ H)fEOBEHEND 5.
NARZER] X @ Alexander-Fox polynomial 13,

A(X) := A(m (X))

LEFET H. X N homology 3-sphere X N D n pl5y link L @ & =¥, % meridian A3t
FITDLHODTR -, t, £ LT,
Ar(ty,- - tn) == AZ — N(L))

% L @ Alexander polynomial &9 5.
Example 1.25. (1) 1 =Z = (z | ) = (z,y | r = y)

H=()~7Z. %:o, g—gzlck@\ az)y=(o0 1)

E(Z)=(Q1)=Z}t,t7'] £b. A(Z) =1.

Z U trivial knot @ Alexander polynomial 781 T % 2 & ZRT.
2)m=(z,y|r=2aPy?)  (pg)=1 pg=2

H={)=2Z7T, nx)=t1, nly) =t LT 5.

or P —1

L Pl 1=

or " toohrd r—1"

or yli—1

_ — P q—1 1) =zP .

99 Py ™+ fy+l) =2 1
a1 pa ] 9 1)(t -1

B(r) = v NS i Ganltd [ i)

a4 — 1 P —1 (tr —1)(t7— 1)

Z 1 (p, ¢)-torus knot @ Alexander polynomial 3% .
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Definition 1.26. (Order of a module)

K % commutative ring, H % finitely generated K-module & 4. Z D& &,
f: K™ — K" K-homomorphism T, Coker (f) = H, n WHERTH 25 b ONEE
T5. mIFER, B HNRNZ EIHERT 5.

Km 1 . gn L H 0, exact

K »% Noetherian 72 613 m ZG[RICEN 5.

A % f ® m x n-presentation matrix, E(H) % A & nK/MTHINTEKRE NS
K ®ideal &9%. Zhid H @ presentation 12 & 6T —EBEMICHRE 5. K A% unique
factorization domain (UFD) @ & &,

ord (H) := gcd(E(H))
CEFKTDH. HDorder 239, 2T t+u (uwld H © unit) FFOHHETHE 2.

Example 1.27. K =7, H=7Z/dZ ®Z/bZ (a,b>0)
. . a 0
H @ presentation matrix [% ( 0 b ) 72D, ord (H) = ab.

X % finite CW-complex, H := H{(X), G := H/Tor (H), pr : Z[H] — Z[G] %
natural projection &9 %. Z[G] 13 Z LOHRIK Laurent ZIAAERZ2 DT, Noetherian
UFD T&h 5. k- T, finitely generated Z[G]-module M (X L T ord (M) 1 well-
defined TH 5.

Definition 1.28. (Alexander function)
q: X — X % maximal free abelian covering ., CP' (X) = C,(X) I3 finitely
generated Z[G]-chain complex TH 5. Z D& X,

AX) = [lord (HP (X))] =V € Q(z[6)

i=0

% X @ Alexander function & €T 5H. TNk +g (g € G) FOHMETHRE 5.
CY" (X) 7% non-acyclic THNIE, AX) =019 5. E7/., finite CW-pair (X,Y)
ICRFL T, AX,Y) BERRICERTE 5.

Example 1.29. (1) X = S!
HY (X)=0, HY (X)=2Z[t,t71]/(t - 1).
ord (HY" (X)) =1, ord (H)" (X)) =¢t—1. A(SY)=(@-1)""

(2) X =8t x st
HEY' (X) =0, HY" (X) =0, HY (X) = Z[t7", 45"/ (tr — 1,12 — 1).

ord (HY" (X)) = ord (H{" (X)) =1, ord (H{" (X)) = ged(t1 — 1,t2 — 1) = 1.
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A(Stx Sty =1.
LIFOFEMIIEETH .
Theorem 1.30. (Turaev [25]) Let (X,Y) be a finite CW-pair. Then

P (X,Y) = A(X,Y).

2Tk Y, Alexander function /% Milnor torsion O 2 DEFHRE BT 2 &8
TE 5. ZNOEFAICIE. matriz T-chain £ WO EEZH WS, WIS H 2 OEERH
DI=DIEFITHESNIZEE T, MICIGHITR S Z D720 Zehnlankbuywod 535N
ThoH. MEARKOEREE>TH L.

I, 3-dimensional manifold {235 C Milnor torsion ¢ Alexander polynomial
DR Z B R/ EHBEREHRTH 5.

Theorem 1.31. (Turaev [25], [27]) Let M be a connected compact 3-dimensional
manifold with x(M) =0, and H = Hy(M). Ifrank(H) > 2, then 7P" (M) = A(M).
Ifrank (H) =1 and H/Tor (H) = (t) 2 Z, then

AM)- (-1t (OM # 0 or wi(Tor (H)) # 1),
™M)= AM)-(t—-1)"2 (M =0, and wi(H) = 1),

AM)-(#2—1)"r (OM = 0,wi(Tor (H)) =1, and w1 (H) # 1).

C NOFERATEIE. 28K D Poincaré duality % Fvy5. AT, R EK> T <.

Corollary 1.32. Let 3 be a homology 3-sphere, K a knotin X, and H1(X — N(K)) =
(t) 2 Z. Then
(X - N(K))=Ax@®)(t—1)"".

Proof Theorem 1.31 T, rank (H) =1, M # ) OHHETH 5. O

Notation (1) Homology 3-sphere ¥ [N ® knot K 1Z¥h > T p/g-surgery L 7=fEHR D
SR % X(K;p/q) &R

(2)d(>2) & p OfIL L. (k21 OFMdFIRE T5H. 20L& X, ¢q: 2t 071/ (1P -
1) — Q(¢) ring homomorphism % 94(t) = M HEPNL b DL T 5.

Corollary 1.33. (Turaev [24], [25], [26]) Let p and q be integers satisfying (p,q) =
1,lp| > 2 and ¢ # 0, d (> 2) a divisor of p, and ¢ a primitive d-th root of unity.
Then

TVUS(K;p/q) = Ak (O -1 —1)7



where ¢§ = 1 (mod p).
Proof Theorem 1.15 (excision), Proposition 1.20 & Corollary 1.32 KV &»h 5. O

1D pFIRIEZTZFARLDTIFRL, HHDDL p O dFIRTHRDL Z L%
IZ8h T < % (Main Theorem 2 OFERH 2 5HR). HFIC K % trivial knot & 95 &R
NEEPND.

Theorem 1.34. (Reidemeister [20]; Franz [6]) Let L(p,q) be the (p, q)-lens space.
Then

P (Lpg) = (- -7
where ¢§ = 1 (mod p).

#%CTH T < % Franz OEH (Theorem 2.4) #5212k Y. lens space D5y
FAEHAHEL LN TED.

Theorem 1.35. (Reidemeister [20]; Franz [6]; Brody [1]; Przytycki-Yasuhara [19])
Two lens spaces L(p,q) and L(p',q") are homeomorphic if and only if (1) p = p’,
and (2) ¢ = £¢’ (modp) or g¢’ = £1 (mod p).

Reidemeister torsion 137072 < & ¥ lens space |8 L CTIE58£ 7% invariant TH 5.
1 homology lens space (X L CENFEN N D 2 EFARL DNz ofgoT —<
Thb.

1.4. Examples
WL OPEHEPIE T L.

Example 1.36. (1) X = S! x §?

Hi(S*x8?)=(t) 2 Z. X =S'xS5% % 2 DD solid torus T1,T> (&£ S x D?) &
M ET 2 (Figure 8).

Hi(T)={t)=2Z (i=1,2), 1 NTy =0Ty = T, = S x SL.

TiNTy =Ty, TiNTy, =Ty 2/ LT, Hi(X) Tt =ty =t ODBFRKIAS.

T: T,

FIGURE 8. decomposition of S! x 52
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T(8Tx S%) = (= 1) Hte = 1) 1T e = (E - 1) 72
(2) X =8t x 5" (n>2)
Hl(Sl X Sn) = <t> = 7.

(1) EARRICT 205 niZ DV TOIFIECTLAT OfE R Z R T HiER Lo,

' xs"):{ (t—1)72 (n 135
1 (n 133750)
TRV, n=1DHETHIEL {/A>Tn 5,
(3) X =S' x By, (B 1%, n{AD l-cell, 1D O-cell £V 75T~/ n>2)
H(S* x B,) = Hi(SY) @ Hi(B) = (t) @ {t1,--- ,tn) = (t,ty,--- ,t,) X Z T ¢
3 Hy(SY) o&ERTT, ¢ (i =1, ,n) 13K B, @ l-cell ICHIRT 25t 95, STxB,
1%, n{f® torus % longitude I2¥h - THEHE L /225 & Rt 5.

7(S' x Bp) = (t —1)" %
ORI, n=1DHA5TUIELL{L>Tn5.

(4) X=8"xY
(2), (3) & 9.

(St xY) = (t —1)7xY),

ZZT x(Y) & Y @ Euler number TH 5.
SEARLE. Y Dcel DEE LT, Y Dcell e & TH L X, St xe ZEVVIRIGD)E
WA L TS FETH S, TOBR B SR ORISR R S 2 & IR

Zh &V, SN fibred knot complement 2° trivial bundle 12725 D13, trivial
knot complement O & EDARTH 5.

(5) X =Klein bottle
H(X)XZ®Zy, Hi(X)/Tor (H1(X)) = (t)

IR

Z.

torus & [FEEZR 3 E| 723, Z-covering TH 5 Z L ITVFE.

T(X)=1-(t+1)-t+1)"' =1

(6) X =St £ B,-bundle T, rank (H1(X)) =1 %5 bo.

f: Bp, — B, % monodromy map &9 5. (Figure 9)
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[« Hi(By) — H1(By) |& isomorphism 1272 5. HBFZ basis IC &V f, Z#RHL
lbor ALT5bH. ZoeE, det(A) = £1.
I ZBAATH & LT, r=rank(A—1) &< &, Hi(X)/Tor (Hy (X)) = Z"HT.

rank (H1(X))=1 < r=n, TH5.

FIGURE 9

2-cell % ;. l-cell % 7,0, O-cell &z &9 5.
i) = tfu(mi) — 7i,
o(r) =0, 0(a) = (t — 1.

7(X) = (t — 1) " det(tA — I).

Koz kv, fibred knot DR EIROEM £1 TH D 2 & &, Alexander poly-
nomial DIRFD 1/2 A3, minimal genus & —HT 5 Z Lo 5b.

(7) X = (p, q)-torus knot complement

Hi(X) = (t) = Z.

S3 % 2 Do solid torus Ty, Ty DFNCHET 5. (p, q)-torus knot K 1%, 9Ty = 9T
DEICFESTVDLERL. 20L& K olifs N(K) X, T, Tr ZHl5. ZToHIb5h
ToHER Y solid torus T, TN H %2 X1, X 295, X = X, UX, T, XiN Xyl
annulus TH 5.

X1 @ core # l;. meridean % mq.

X5 @ core % Iy, meridean % moy £ 95 &,

Hi(X1 N X)X Z OERMITTH. [1]P[mq]? 7213 [Io)1[me]P RIS ND.
[mi] =1, [ma] =1 TH 5. [l1] =t1, [lo]) =t2 & BXL.

T(Xl) = (tl — 1)71, T(Xg) = (tg — 1)71.
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Hi(X)Tid =t ThH 5.

=19, to =tP & D&, t) =t3 =P DAL

T(X1)=@1—1)" 71(X2) =@ — 1)~ 7(XiNXo) = (#P7 —1)7L.
T(X) =" —1)7' (@t —1)7 (P - 1).

Zh &V, (p,q)-torus knot @ Alexander polynomial 13

(71— 1)(t - 1)

B )

2. Rational surgery along a torus knot
2.1. Moser’s Theorem

Main Theorem 1 OE)E & 72 - 7= EH 238X % . S3 ND torus knot 12V 9 rational
surgery DFEROZIREZNFAL b D TH 5.

Theorem 2.1. (Moser [16]; Gordon [8]; Shimozawa [23]) Let K, s be the (r,s)-
torus knot in S3, and M = S3(K, s;p/q) the result of p/q-surgery along K, s where
Ipl, 7], |s] > 2 and g # 0. Then there are three cases :

(1) If |p — qrs| # 0, then M is a Seifert fibered space with three singular fibers of

multiplicities |r|, |s| and |p — qrs|. In particular,
(2) if []p— qrs| =1, then M s the lens space L(p,qr?) (Figure 1).

(3) If I]p — qrs| =0 (p/q = rs), then M is the connected sum of two lens spaces,
L(r,s)tL(s,r).

Reidemeister torsion % V> T Z OFERIC ENFHEN D DR - T <. Figure 1
l%. (2, 3)-torus knot (trefoil) Ko 3 @ 5-surgery OfESRAS lens space L(5,1) 12725
ZeEFRL TS (cf [21], [23]). 245 D Reidemeister torsion 1Z—F T 5157 T

Ho. M= S3(Ks3;5). (% 1 DJFH 5 FAR e L T Reidemeister torsion % 515
5. Corollary 1.33, Theorem 1.34 L V.

(M) = (= ¢+ D=7 (LG, 1) = (-1
INEDOXITRENT FES B DICR A 5. Reidemeister torsion 13 £¢™ fFDEWT
EFRINDLDT,

G —(+1=+m
MRV NLD DT, LRSI MBIz, Ll

2 = ¢ 41 = [1 - 2cos(2mk/5)| # | £ ¢ =1
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FU. ThIBESNDS. TR T L) THERRTE D155 0 2FE. (p,q)-
torus knot @ Alexander polynomial @A E TINDIESL LIROEIELNTE 5.
=155

(SR (S

GRS

T (M) = (P -+ D(C-1) 7P =

(C — 1)(C — 1) —2 20,2 —2
= —1)2=— —1)72
(§_2—1)(C2—1)(§ ) C (g )
FLOD - iFebmL (&2 CICESPALETRA—HTES. 20, ¢ Ol

DHICODHHEENH 0% BT L TN TH5b.

Y5 t Z[E /(10— 1) = Q(Q)

WCBWT, Ys(t) = C EEFBRLEM Ys(t) =2 L L TUREITZED LR D TH D,
o: ¢ — (2 1¥ Galois £ Gal (Q(¢)/Q) ICJ&T 50T, —fROBAICHLZOHHEE
EZRINETHL. MR 2o ‘Bl BHEZONSHER L2, 50 IE[EhkE
THMITIOERRNTNL,

2.2. Main Theorem 1

Reidemeister torsion DENS—E L 7z 2 D DZEREISARYICHEFEN? £ WD FFE Tlk
ZofETIEHRb . O ETEMAE LN E D NSO E T 5.

Definition 2.2. (Lens space type)
(R 1DOFHRpFERETL. 20L& X, aec Q(C) 2% lens space type T B & 1%,

a=£("C -1 =D myijeZiGp) =1, (jp) =1

DIFICREIND L E 2D,

M ¥ orientable closed 3-manifold T, Hy(M) 2 Z/pZ (|p| > 2) THH LT 5.
2% Y. M ¥ homology lens space TH 5 & T 5. ¢t & Hi(M) DERNIE. d (> 2)
Epoffie LT Lk 1 DRI dFERE TS, ¢a: Z[t, 7]/t — 1) — Q&) %
Ya(t) = & THRELBRUERIE L T4, EBD dITKL T 7¥e(M) OfEDS lens space
type D& &, M ZDYH DN lens space type TH 5 & EFT 5. Theorem 1.34 L ),
JH D lens space 14 lens space type TH 5.

Remark 2.3. H5W 5 oy #Hb Z 212k 5T, Reidemeister torsion @ _FTIET
ELRVDZLERSTHDLDTHD. ¥t Zitt7 /(" — 1) 6 DB 0%
A ¢ O Im(p) L7220 HE2 b0, EREEHICLY, Zit )/t - 1) 2D
ideal CE|572bDTH L. SAb e, Zit,t7 %, (t"—1) &L ideal TH| 5
bDTHDL., 2N t" — 1 DT THEMSI NS, S 612 zero divisor ZFp/z78v &
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DT BT, BT CERSNENETH S, T2 L LIRS Im () = Z[¢]
W5 DTH 5.

Notation
(-1 -1) B
Ay s(t) = =) ((rys) =1),
ZZT(rs)ldr & s ORAAWHERT. (rs)=11Er & sBWEWVIIREWHI Z L

THbH. Zhid (r,s)-torus knot @ Alexander polynomial &[5 U TH 5.

Main Theorem 1 Let K, s ((r,s) = 1) be a knot in a homology 3-sphere ¥ with
its Alexander polynomial A, s(t), and M = X(K, s;p/q) the result of p/q-surgery
along K, s where |p|,|r],|s| > 2 and ¢ # 0. Then M is of lens space type if and
only if the following (1) and (2) hold.

(1) (p,r) =1, and (p,s) =1, and
(2) r ==£1 (mod p) or s = £1 (mod p) or grs = £1 (mod p).
Z O DT DUl E T 5.

Theorem 2.4. (Franz [6]) Let ¢ be a primitive n-th root of unity, S the set of
non-zero dwisors in Z/nZ. Let {a; (j € S)} be integers satisfying the following
conditions:
(ay=a;, (2 a=0 ) J[-D*=1

jeSs €S

Then a; =0 forall j € S.
ZOFEH O L B oMRZ v 5.

Definition 2.5. (Norm of an algebraic number)
F/Q ZHMRIKR Galois ER &5, a e F O ZDILKRICBIT S norm Npjg(a) &
UFTERSNDS.
Np/q(a) = H o(a).
o€Gal (F/Q)
FI 51 Galois HECTZ IV VEIL THy LT TH L. WL a @ norm T
VIERDEDNIME LD S 2 LITHER. PIAIL

NowaQ(V2) =2, Noryaynq(v2) =4

Thb. L. a DRNSHEROEHIHORF O £1£5TH 5 Z LITIZZED Y M3

W, ZOfl, norm ICBHL TRV NI OFEER e 2 T Lo THBL.
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Notation ik F/Q 2 577 & S, Npjq(a) ZHIZ N(a) &RKT. LAEOFE T
FIXM5E (cyclotomic field) T#$H5 2 EMETH L. FIMELIZQ(C) (¢ 1E 1 DRFAR)
DZEThHD.

Proposition 2.6. Let F//Q be a finite Galois extension, and o an element of F.
We denote Np q(a) by N(«). Then

(1) N(e) € Q,

(2) if « is an algebraic integer ( i.e. its minimal polynomial is a monic polynomial
over Z), then N(a) € Z,

(3) if « is an algebraic integer, then o™
N(a) = £1.

1s also an algebraic integer if and only if

Proof of Main Theorem 1
Case 1. (p,r) =1/D (p,s) =1 D& &
FPLRIHCOVWTHERL THEL. UT0 @, @ FRMHETH 5.
@ (p,r) =122 (p,s) =1,
@ EBD p DK (> 2) IS LT (d,r)=121D (d,s) = 1.
d(>2)Zp e LT, 21D dFRE T 5.
V(M) = Ars(O)(E-DTHET - )T = (€ - (E - D)THE D) THET )7L

ZOED £E™(E - 1)THE — D)7 ((i,d) = 1, (j,d) = 1) &2 5 RBEA5M %K
HbhH. DFEY,

€ =DE =D - 1) =€ -D(E - 1(E = 1)
L0 % REFHFRMERD L. WRIHHRILE 2 0 TR 2 &,
(€ =DET -DE -DE -DE -DET - 1)

= -DETT-DE -DET-DET-D)(ET-1).
Theorem 2.4 Xk V.

{TS, 7715’7:’77;7]" 7] (mOdd)} = {T’, 77"75775’(?77(? (mOdd)}

(i) rs = +s (modd) £/l rs = £r (modd) D& &
r =41 (modd) £7/21% s = +1 (modd) X [FHETH 5.

(ii) rs = £q (modd) D & =
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grs = +1 (modd) L FAMETH 5.

d=pD& X, r==1(modd) £721d s = +1 (modd) £721F grs = £1 (mod d)
THE, o d (>2) THRYILD.
Bz, () o &, w9 (M) = 7% (L(p, q)), (i) ® & &, 792 (M) = 7%»(L(p, r5)).

Case 2. (p,r)=d>2D& ¥
ZDEMDEOITE, (d,s) =1THdHZ & 2Rl TH<.

p=pdr=rdl 35 tzRKETLTD.
s — 1
(- ne-1) _ @ Y
Ar,s(t): (tr—l)(té—l) = I —1
P I Gl

A T i U
DA p o pd ] s — 17
EX 1D dFIRETH., 2oL X,

(M) = (6" = 1)THET -7
INAYEEM(E - 1) "N - 1) ((i,d) =1, (j,d) = 1) ISRV BFRNZ & ERT.
MR Q(€)/Q DIERIREL o(d) THS. (p(n) 1% Euler BIEL. 3.2 B0
&) Nqe/qla) & N(a) &R
N(s(€ =1)7HET = 1)) = N(s)N(E* = )TN - 1)~
NEEE™(E -1 - D)) =NEEMNE - )TINE -1~
N(s) = s (|s| > 2), N(££™) = £1,
N(E -1)=N(E -1)=N(E -1)=N( -1) #0

FU, WEFEL LRV ERV. Lo T 7%e(M) 1272 ) B,
LA EICE Y, Case 2 1IN T, Case 1 ODADES. O

3. Rational surgery along a genus 1 knot
3.1. Goda-Teragaito’s Theorem

Main Theorem 2 DB & 72 - /2B bR 5. S3 PND hyperbolic knot 121 D
surgery % FHN/AEFR D —EB T, genus 1 knot 7° 5 lens space ZE U H61E, Z D
knot 1% trefoil THLTHLZ L BRI DTHS.

Theorem 3.1. (Goda-Teragaito [7]) Let K be a genus 1 knot in S3. If a rational

surgery along K yields a lens space, then K is the trefoil.
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3.2. Cyclotomic polynomial

Main Theorem 2 OFERHICIE. D ZIENICE DD LEREELMFE S, LT [29] &
CEZRENV. RFAE (SEIFHIET L) THATLIHRLEATHS. GO
72WIlEL THL.

Definition 3.2. (Euler function)

wuNHNéwmp{@mmX@Qﬁyﬂnzl

TEZFZL 2 D% Buler function £ 139 .
Proposition 3.3. (1) If (m,n) = 1, then p(mn) = p(m)p(n).

(2) Let p be a prime number, and r > 1. o(p") =p" —p" L =p" " Lp—1).

(3) Let n = Hp“ be a prime factorization of n. p(n HpTFl -1).
i=1

(4) If n > 3, then v(n) is even.
O Tow-To ()
d|n

Definition 3.4. (Mobius function)

1 (n=1)
p:N—={=1,0,1} Z p(n) := ¢ (=)™ (n=p1- pm; LOICER LEHOE)
0 (€ oft)

TREFHELZY D% Mobius function &9 .

Proposition 3.5. (1) If (m,n) = 1, then u(mn) = p(m)u(n).
n n
=g =3 (G).
d|n d|n
(3) Let ¢ be a primitive n-th root of unity. Z ¢t = p(n).
i€(Z/nZ)

Definition 3.6. (Cyclotomic polynomial)
(E1OFRHnFIRETHL &,

B,2)= [ @-¢)

i€(Z/nZ)*

% n-th cyclotomic polynomial £ €357 5.
Proposition 3.7. (1) ®;(z) =z — 1.

(2) ®,.(x) is an irreducible monic polynomial over Z.
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(3) The degree of ®,(x) is p(n).
(4) z¢M P, (271) = B, (z) (n>2).
(5) Let p be a prime number, and r > 1.
®, (1) = gPT =) o T =) Ly P

(6) 2" —1 =[] ®al=).

d|n
0 (n=1)
(7) ®,(1) =< p (n=p";pis a prime number)
1 (otherwise)

(8) (}n(l‘) = H(x% _ 1)u(d).

d|n

m
(9) Let n = Hp:i be a prime factorization of n.
i=1

r1—1 rm—1

D, () = Py, p,, (0 TP )

3.3. Main Theorem 2

REL 2 @ Alexander polynomial %52 knot IC{y 9 surgery 230> lens space type
1272 0 15D &k X7z DA% Main Theorem 2 TH 5.

Notation A, (t) :=n(t—1)2+t=nt>—2n— Dt +n (n #0).

Main Theorem 2 Let K be a knot in a homology 3-sphere ¥ with its Alexander
polynomial A (t) = A, (t), and M = S(K;p/q) the result of p/q-surgery along K
where |p| > 2 and ¢ # 0. Let d (> 2) be a divisor of p, &4 a primitive d-th root of
unity, Yq : L, t7 /(P — 1) — Q(&4) a homomorphism such that 4(t) = &4, and
7%4(M) the Reidemeister torsion associated to 4. Then the following (1) and (2)
hold.

(1) If n < —1, then 7% (M) is not of lens space type.
(2) If |n| > 2 and d is a prime number, then T¥4(M) is not of lens space type.
ZHUS RV EAFNEN NS,

Corollary 3.8. In the same assumption as Main Theorem 2, if M is of lens space
type, then

Agt)=t*—t+1 (n=1).
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Z OFEHIE Theorem 3.1 ORFIRFIFRICZ - TWT, S BITLAT @ Ozsvéth-
Szab6 [17] DFERO—EDILIRICIL > T 5.

Theorem 3.9. (Ozsvath-Szabé [17]) Let K be a knot in S3, and M = S3(K;p)
the result of p-surgery along K where p is an integer. If M is a lens space, then

the Alexander polynomial of K is the following form

A(t) = (~1)™ + 3 (-1 ),

m
j=1

where 0 < 81 < 89 < -+ < Sy

DFEVY., K2 DEEICRS . S % homology 3-sphere X 12, T surgery %
B surgery ICHERL T 5.

Main Theorem 1 @ Case 2 OFEFF%EI%ET 5 &, 7¥4(M) @ norm 7% lens space
type 723D norm & —EHT 5720 DKM DN D.

Lemma 3.10. Let K be a knot in a homology 3-sphere ¥ with its Alexander poly-
nomial A (t), and M = X(K;p/q) the result of p/q-surgery along K where |p| > 2
and q # 0. If M is of lens space type, then

Nqeay/q(Ak(éa) =£1 (dlp, d > 2).

Ak (&q) DMEAVEERUR Z[€4]) O C unit (Proposition 2.6 (3)) THLZ L% F -
T, EE A () 2 Z[Zn] OFT unit ThHHZ L ETERD.

Definition 3.11. (Norm polynomial)
(Z1DFIRpFARETH & &,

fp(n) == Nq(¢)/Q(An(C))

% norm polynomial £ E€FT 5. THIEnIZONWTD ZIRHOLHEN 705,
Ay (t) =0 DIR% a1, 00 T 5. ZOLZUTOBNEETH L.

)= I (¢ =a)@ - as) = n?P @, (1) @p(az).

i€(Z/nZ)x

Main Theorem 2 & V) L5RWFIRTH LT &R T.
Theorem 3.12. (1) If n < —1, then fp(n) # £1.

(2) If |n| > 2 and p is a prime number, then f,(n) # £1.
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FCp=20r % fon)=An(—1)=4n—1 LV, n#0T fo(n) #+1 &5,
AR, p>3 2ET 5.

Proposition 3.13. The degree of fy(n) is p(p).
Proof A, (¢") = (1 —()?n+ ¢ (i € (Z/nZ)*) En D 1IRNTHD. O

Lemma 3.14. If p > 3, then there exists a polynomial g,(n) of n over Z such that
fo(n) = {gp(”)}Q-
Proof A, (¢) = (?A,(¢7).

eBL. ZoeE ) eqQ+H ) Th L.
C#ECTED[QEQ): QU+ =22DT, [QEC+(T): Q] =¢(p)/2.

9p(n) == Nq(c+¢-1)/Q(6(C))
ETIE L. O
Ip(n), gp(n) ZLAT D L DITEL TEHEL.

©(p)

' (p)/2 ‘
fp(n) = Z a;n', gp(n) = Z bn’.
i=0 §=0
Lemma 3.15. a,,) = {®,(1)}? and ap = 1.

Proof a, () = Na)/((1 = ¢)%) = {®,(1)}?, a0 = No(/q(() = 1. O
Lemma 3.16. f,(n) and g,(n) are alternating polynomials.

Proof

P

6(¢) = n(©) =1—2{1— cos(2nk/p)}n.

¢
22T, (k,p)=172DT, ZHbDFET alternating. O

Proof of Theorem 3.12. (1) n < -1 D& &, fy(n) > app +a>1+1=2 &
D, fo(n) # +1. O

Corollary 3.17. We can take by /2 = ®,(1) and by = (—1)¥®)/2,
Proof Lemma 3.15, Lemma 3.16 LD 1§61 5. O

Lemma 3.18. a1 = 2u(p) — 2¢(p). In particular, if p is an odd prime number,
then a1 = —2p and by = (_1)47(17)/2—11).

N, ¢ ) i
Proof a1 = Z (1- Cl)Q%Q() = Z (C+¢1=2)
i€(Z/pZ)* i€(Z/pZ)*
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=2 > ¢ =20(p)

i€(Z/pZ)*
Proposition 3.5. (3) & 0. a1 =2u(p) — 2¢(p).
K p WERHO L E, a1 =2-2(p—1) = —2p.
(- +bin+bg)? =+ 2bobin + b3
0. b= (fl)so(p)/%lp_ O
Lemma 3.19. If p is a prime number, then f,(n) = n?(af —1)(ah — 1).
n?(of —1)(o — 1)
fp(n)
Lemma 3.20. If p is an odd prime number, then
bj =0 (modp) (4 =1,---,9(p)/2).

Proof f,(n) =nP(af —1)(ah — 1) =nP(ay — 1)P(ax — 1)P
— {n(as — 1)(az — 1)}? = 17 = 1 (mod (p)).

Proof =n(ag — 1)(az —1)=A,(1) = 1. O

Z 2T (p) & p TAEINSG n DZIENIER Zn] @ ideal.
Z[n]/(p) = (Z/pZ) [n] 13 UFD DT, fy(n) = {gp(n)}* = 1 (mod (p)) 7*5
gp(n) = £1 (mod (p)) &7 5. ZhiE

bj =0 (modp) (j=1,---,0(p)/2)
=BT 2. =

Proof of Theorem 3.12. (2) p =2 OEFHFITKD > TWDHDT, pldEHRME T
%. Lemma 3.20 £ V. Z EOZIER h,(n) BHEFEL T,

gp(n) = pn - hp(n) + bo.

p>3 &0, fo(n)==%1& hy(n) =0 LFEMH.

N

hp(n) = Z cxn®

k=0
&9 %L E, Corollary 3.17, Lemma 3.18 LV, ey =1,¢0 = 1. 2N &V, hy(n) =
0761 n==+1. (EEHEE!) L->Tn| >2D&E, hy(n) #0. 2F 0,
fp(n) # 1. O

B ZIE ha(n) =1, hs(n) =n—1, he(n) = (n —1)2, hii(n) = (n — 1)(n3 —
4n? +3n —1).

Corollary 3.21. Let K be a knot in a homology 3-sphere % with its Alexander

polynomial Ak (t), and M = X(K;p/q) the result of p/q-surgery along K where
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Ip| > 2 and ¢ # 0. If Ak(t) can be divided by A, (t) (n # 0,1), then M is not of

lens space type.
Proof N(Ax(¢)) 1Z N(A,(Q) THIVTNT, N(AL(C) #+1 TH 5. O

Question 3.22. If 3(K;p/q) is of lens space type, then is Ak (t) a product of

cyclotomic polynomials ?

o2 < Question 1L THELMSTELDS, ZUTRBIVH L. K % (—2,3,7)-
pretzel knot & 9% (Figure 10). Fintushel-Stern[4] 12k V. K IZ{h 9 18-, 19-surgery
¥ lens space IC72 5 Z EMHIHLNT WS, & Z AN,

Agt) =t =% 447 5 445 ¢t 43 —t 1

\3 Z L irreducible 7228, 1 OXFREZRICF 272D TRHPITH 2 (cf. [9]).

5
o
&\’(\'&J

FIGURE 10. (—2,3,7)-pretzel knot

4. Generalizations and Applications

COBIFEFBIRTCWEEEET. TWFERA.
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Pseudo-Anosov braids on the 2-sphere
Kazuhiro Ichihara (HiJi—#) 1

Joint work with Eiko Kin (JSPS research fellow, Kyoto Univ.)
and Kimihiko Motegi (Nihon Univ.)

ABSTRACT. A correspondence between braids on the 2-disk and those on the
2-sphere is naturally induced from the inclusion map of the 2-disk into the 2-
sphere. A natural necessary condition for a pseudo-Anosov braid on the 2-disk
so that the corresponding braid on 2-sphere is also pseudo-Anosov. It is shown

that this condition is not sufficient in general.

1. PRELIMINARY

The main subject of this talk is the natural correspondence between braids on
the 2-disk and those on the 2-sphere. Let b be an n-braid on D? with n > 3. A
correspondence between braids on D? and those on S2 is naturally induced from
the inclusion map of D? into S2. We denote by b the braid on S2 corresponding to

b. Then it is natural to ask:
Question 1. What happens under this correspondence?

For example it has been determined which braids on D? become trivial under
the correspondence. Please refer to [1] and [8] for the theory of braids.
In this talk, we concentrate our focus on the behavior of the Nielsen-Thurston

type under the correspondence.

1.1. Nielsen-Thurston type. In the following, we give a rough explanation on
the Nielsen-Thurston types of braids.

First recall that the definition for surface automorphisms. Let ¥, ,; denote a
compact orientable surface of genus g with p distinguished points and b boundary

components.

Definition 1 ([11]; [3], [2]). An orientation preserving homeomorphism of X ,;
is;
(1) periodic if whose some power is equal to the identity,
(2) reducible if it leaves an essential 1-submanifold of X, ,; invariant (a 1-
submanifold of X ;5 is called essential if each component is homotopically
1630-8506 A= ELALARTENT AR EAT-REEEEEHRISR, BASIHRIARHIBIZEE (PD). JSPS
research fellow, Department of Information and Computer Sciences, Nara Women’s University,

Kita-Uoya Nishimachi, Nara 630-8506, JAPAN. E-mail: ichihara@vivaldi.ics.nara-wu.ac.jp
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non-trivial and not boundary-parallel, and no two components are homo-
topic),

(3) pseudo-Anosov if for the map f, there exist a pair of transverse mea-
sured foliations (F*, p®), (F*,u") such that f(F°,u®) = (F°, Ap®) and
FFY pu) = (F A" u) for some A > 1.

Mainly due to Nielsen and Thurston, the following trichotomy has been estab-
lished.

Fact 1 (Nielsen-Thurston classification ([11]. see also [3] or [2].)). Suppose that
29—2+p+b> 0 holds. Then any orientation preserving homeomorphism of g pp

is isotopic to a periodic map, a reducible map, or a pseudo-Anosove map.

Remark that this trichotomy is invariant under conjugation.

Now we give a definition of the Nielsen-Thurston types of braids.

Definition 2. Let b be an n-braid either on the 2-disk D? or on the 2-sphere S?2
with n > 3.

e There exists a horizontal-level preserving homeomorphism ® of D2 x [0, 1]
or S2 x [0, 1] such that ®(x,1) = (z,1) and ®(b) become the trivial braid.
Then ®|pzy 1oy or ®|s24 0y yields a homeomorphism of D? or S2, which is
determined up to isotopy. We call this homeomorphism the homeomorphism
associated to b and denote it by f3.

e The braid b is periodic, reducible, or pseudo-Anosov if f, is isotopic to a

periodic map, a reducible map, or a pseudo-Anosov map, respectively.

It can be easily seen that

e if a braid b on D? is periodic, then the corresponding braid bon S? is
periodic,

e if a braid b on D? is reducible, then the corresponding braid b on S2? is
reducible or b is equivalent to a conjugate of a braid which has one isolated
string.

Therefore the following question arise.

Question 2. For which pseudo-Anosov braid b on D2, is (not) the corresponding

braid b on S2 pseudo-Anosov?

1.2. Problem. Concerning this question, the next observation was given by J. Los

(in private communication).
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Fact 2 ([7]). Let b be a pseudo-Anosov braid on D2. If the corresponding braid
b on S? is NOT pseudo-Anosov, then the invariant measured foliation of fy has a

1-prong singularity on the boundary OD?2.
For example, we have the following for 3-braids on D?,

Fact 3 ([9], see also [10]). Let b be a 3-braid on D2.

(1) The corresponding braid b of S? is always periodic, in particular, is not
pseudo-Anosov.

(2) The braid b is pseudo-Anosov if and only if it is conjugate to a braid
(0102)?*P(oy !, o) for some integer k and a positive word P.

(3) When b is pseudo-Anosov, then the invariant measured foliation of fi, has

a 1-prong singularity on the boundary 0D?2.

In the fact above, o1, ...,0,-1 denote the standard Artin generators of n-braids
on D2,

Thus the next problem can be considered.

Question 3. Is the converse of Fact 2 true? That is, for a pseudo-Anosov braid
b on D2, if the invariant measured foliation of f, has a 1-prong singularity on the

boundary OD?, then is the corresponding braid b on S2 not pseudo-Anosov?

2. RESULTS

Our main result is as follows: Question 3 is negatively answered.
Theorem. Let b, ) be the n-braid on D? given by
0109+ ok (opg1) - (on1)

where n >4 and 1 <k <n—2.

(1) The braid by, 1, is pseudo-Anosov for alln >4 and 1 <k <n—2.

(2) The invariant measured foliation of fy, , has a 1-prong singularity on the
boundary OD?2.

(8) The braid bn/\k on S2 is periodic if and only if n is odd and k = (n —1)/2.

(4) The braid bn/\k on S? is reducible if and only if n is even and k = (n —

2)/2,n/2.

Corollary. Let by, be the n-braid on D? as in Theorem 2. Then the corresponding

braid l;\k on S? is not pseudo-Anosov if and only if k = (n —2)/2,(n—1)/2,n/2.
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We end this note by giving some keys to our proof.

(1) and (2) These are achieved by actual constructions of invariant transverse

measured foliations for f, ,. Essentially this was done in [5].

the ‘if’ part of (3) and (4) One can check these part by ‘hand’; by drawing and

manipulating figures.

the ‘only if’ part of (3) The fact we use here is: if l;,\k on S? is periodic, then

it is conjugate to the braid presented by
(01902 - op2"0p %)™

where ¢ = 1 or —1, and m € Z. Then the assertion follows from [8, Chap. 11,
Proposition 2.3].

the ‘only if’ part of (4) By identifying S% x {0} and S? x {1} of S2 x [0, 1], we
obtain a knot m from l;l\k in 8% x S'. Note that if l;l\k on S? is reducible, then
the complement S2 x [0, 1] \I/(;l\k contains an essential torus.

Let L, i be the 2-component link in the 3-sphere represented as the closure of
the (n 4 1)-braid

0102 Op_10p - 0102+ O (0k1) Lo (Opo1) "t - OnOn_1 - 0207.

Then it is easily seen that the complement S% x [0,1] \ m is homeomorphic
to the 3-manifold which is obtained by 0-Dehn filling on one component of L, k.
Thus it suffices to study the toroidal Dehn surgeries on one component of L k.
Moreover we note that the link L, ; is a two-bridge link: It has the Conway form
C(2n—2k—1,2k+1). Then, based on the work [4], we can show that 0-Dehn filling
on one component of Ly, j is toroidal if and only if n is even and k = (n—2)/2,n/2.

We remark that similar results were obtained in [6] independently.
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On the A-polynomial of a knot

Naoko Tamura

1.1. Definition of the A-polynomial

Cooper-Culler-Gillet-Long-Shalen

”Plane curves associated to

character varieties of 3-manifolds.”

Invent. Math ('94)

DEFINITION Let

M : compact 3-mfd s.t. OM = T2,
m(OM) 3\, p

R := Hom(m (M), SL(2,C))

Z[l,m] > 7f(l,m) =0,

then the A-polynomial of M is defined as

f(l;m)

-1

K :a knot, M = S3— N(K) : a knot complement

A(l,m) =

= Ax(l,m) : A-polynomial of K
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1.2. Computation of the A-polynomial
For example
K =3

FIGURE 1

m(K) =< p,x | prp = rpxr >
PN = px - xp

After conjugation and after replacing x by z~! if nenessary we can

assume that

Then

from these equation we obtain the A-polynomial of K.

Ag(l,m) =1+1m°

Ay = —m* +1(m® —m® —2m* —m? + 1) — Pm?
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= =P+ (1-2m*-2m'+m® —m'%)P
+(=m* + m® — 2m!° — 2m!'? + M) — m™
- —m8 + (1 —m? —3m8® — 3m1 + 2m12)l
+(=1+3m* +m* — 3m® — 6m®
—3m* +m!? 4 3m™ — m!%)?
+(2 = 3m? — 3m* — m* + mHmP — m®
= m* + (1 —m?+3m" +4m'? — 2m'")m?
+(=2 4 5m? + m* — 4m® 4 6m™
512 4 2m — 4m!® S )m A
+(1 — 4m® + 2m* + 5m® + 6m®
—4m"? + mM 4+ 5m! —2m!®)1?

(=24 4m* +3m* —m2 +m"* P
m™ 4 (=5 + 9m? + Tm* — 3mS — m!'? 4 2m! — m16)m O

+(10 — 32m? — m* + 56m° + 17m® — 28m10 — m!% 4+ 14m!* — 4m!6
_8m18 + 7m20 _ 2m22)l2m48

+(—10 + 42m? — 24m* — 87m® 4 29m® + 143m!° 4 33m!? — 77!
—17m!6 + 29m1® — 2m2° 4 m? — 8m> 4 5m® — M) 336

+(5 — 24m? + 26m™* 4 36m5 — 43m® — 108m*° + 47m!? 4 192m
+47m1% — 108m'® — 43m* + 36m* + 26m>* — 24m?® 4 5m*®)14m*
+(=1+45m? — 8m* + m® — 2m® 4 29m1° — 17m!% — 7Tm!* 4 33m 16
+143m8 + 29m? — 87m? — 24m>* + 42m?® — 10m>®)1>m!?

+(=2 + Tm? — 8m* — 4mS + 14m® — m'° — 28m!? + 17m! + 56m!°
—m!® — 32m2° 4 10m??)15m®

+(=1+2m? —m* = 3m! + 7m!? + 9m! — 5m1%)7 4 mA®
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2. An ideal triangulation of a knot complement

Y. Yokota

”From the Jones polynomial to the A-polynomial of

hyperbolic knots.”

Int. Sci. (2003)

K : 5y, M : 83— N(K)

%

FIGURE 2

Now we construct an ideal triangulation of M, where the ideal tetra-

hedra is given below,

FIGURE 3

56



and 3 moduli of a triangle are related as follows.

FIGURE 4

Then we have ON (K).

FIGURE 5

Then we have following hyperbolicity equations, where the variables [

and m represent longitude and meridian.

N 22(1—1/23)(1—22): 1—1/2
Z5 ]_—2’4 (1—1/2’1)(1—25)
1 11—z
2 = (1—2)-(1—=2)- —. (1 —
( z1) - ( z4) 1— 2 2 P ( z1)
1 1 1 11— 1
% 1= z) —- 1T
1—2’3 z5 1—21 z3 1—25

If this ideal triangulation determines a hyperbolic structure of M, the

product of the moduli around each edge should be 1, that is,

1= 2924 = Z324%5,
57



which suggest to put
x x m Y
21 =YmM, 29 = —,23 = —,24 = —,R =
m Y x m

Then we can rewrite the hyperbolicity equations

2o L—y/o)(l—z/m) 1—y/x

1—m/z (1 —y/m)(1—1/ym)
and

m
[=—-(1- .
—(L—ym)
From these equations we have
Ag(l,m) = =13 + (1 — 2m? — 2m* + m® — m!%)/?

F=m* +mS — 2m' — 2m'2 + M) — m',
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3. A formula for some infinite knot families

J. Hoste, P. D. Shanahan

” A formula for the A-polynomial

of twist knots”

The twist knot is the knot shown in the following picture.

el

N R I

FIGURE 6

THEOREM
The A-polynomial A, (I, m) of the twist knot is given recursively
by
An(l,m) = & A i) (1;m) = Y An—on/in|(l; M),
where x, y and initial conditions A_;, Ay, A;, Ay are the

polynomial of [ and m.

59



N. Tamura, Y. Yokota

” A formula for the A-polynomials of

(—2,3,2n + 1)-pretzel knots.”

Tokyo Math. to appear.

The pretzel knot is the knot shown in the following.

3

;¢
U

FIGURE 7

This is (—2, 3, 7)-pretzel knot. Then let K,, be the knot shown in the

following picture.

e

\

W

FIGURE 8
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If n=0,1,2,3, the knot K, are the following knots.

Koy =5,
Ag,(l,m) =14 1m",
Ky =38y
A, (Im™ m) = 1+ 1m®,
Ky = 10124

AKQ(lm*??,m) = (1+ lm7)(1 B lm7),

K3 = (—2,3,7)-pretzel knot

A, (Im™2 m)
+(1 + 2m2) m24 l4 + (1 _ 2m2 + m4) m30 l5

_m38 l6.
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MAIN THEOREM

We can define A, (Im™*", m) recursively by

Ay v A 27 B A, v A Apa
An _ 7 9 ! _
Bn « Bn—l +( a7 a) Bn 2 +a Bn—3 Bn—4’
where B,, is
—2(Im®)3T (1 — m?)™(1 + ImS)3*™n (n > 3),
—(Im®)=C+)(1 — m?)~ (1 4 Im®)2™  (n < 0)

and

a = Im®(1—m?)(1+Im°),

B = m?*—(1-2m>)Im® - 2+m?) Em' - *m?>

v o= —(14+m*) - 2+m*—m*)im®

(=l +m* +2mH) P m!? + (1 4+ m*) Pm*,

)

& The outline of the proof.

e
AX

Le

Ls “n

FIGURE 9
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Legendrian curves on fiber surfaces
I 5%/t (Ryosuke Yamamoto)
PNUTNE NI AT S R A o

ABSTRACT. I will talk a way of constructing a (positive) contact structure of
closed orientable 3-manifold M from an open-book decomposition of M, and
we will see a condition that a simple closed curve on a fiber surface becomes

a Legendrian curve in the contact structure.

1. PRELIMINARY
Let M be a closed smooth orientable 3-manifold, K a fibered knot in M with a

fiber surface F. Let F(K) denotes an exterior of K in M.

Definition 1.1. An open-book decomposition (F, ) of M consists of the knot K,
called the binding, and a fibration ¢ : E(K) — S'. A fiber surface F is called a
page. Note that

E(K) = Fx[0,1]/(z,1) ~ (h(x),0)
, where h : F' — F' is a homeomorphism fixing OF pointwize.
Definition 1.2 ([1]). A contact form on M is a smooth 1-form w such that

wAdw#0

at each point. A contact structure (M,€) is a 2-plane field £ = kerw on M. We

call a contact structure is positive when w A dw > 0.

Example 1.3. Let (R3 &) be a contact structure on R? defined by the contact
form wg = xdy — ydx + dz.

(xdy — ydx + dz) A d(xdy — ydz + dz) = 2dz Adx Ady > 0
We call this structure the standard contact structure on R? (see Figure A).

Definition 1.4. A contact structure on M is supported by an open-book decom-
position (F, ) if it is defined by a 1-form w such that

(1) on each fiber F, dw|r > 0,

(2) w is transverse to K and orients K as the boundary of (F,dw).

Definition 1.5. A simple closed curve « is called Legendrian if for every x € -,

T,v C & (ie., v is always tangent to &).
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2. CONSTRUCTION OF A CONTACT STRUCTURE

The aim of this section is to construct a positive contact form w on M supported
by (F, ¢) from the standard contact strucure on S3, through a simple cover p : M —

3. This construction is based on [3].

e Put D = {(z,y) € R?|z?+y? < 1}, and 1-form oy = 2dy —ydx on D. Note
that ag has the propaties follows:
(1) dag = 2dx A dy is a volume form on D,
(2) ag orients OD as the boundary of (D, day).

Definition 2.1. Let S be a orientable surface with boundary and D a 2-disk. A
branched covering map p: S — D is called a simple cover with d sheets if there is
a finite set @ C Int D and each x € D has a disk neighbourhood U as follows:

(1) if z ¢ Q then p|,-1(y) is a trivial d-sheeted cover,

(2) if z € Q then p~1(U) has d — 1 components, one of which is a disk projecting
to U as double cover branched over x, and the others are disks projecting homeo-

morphically.

e Let p: F — D be a simple cover, and set & = p*ap. We have that (1) da
is a volume form on F' and (2) « orients OF as the boundary of (F,da).
e The 1-form 8 on E(K) = F x [0,1]/(z,1) ~ (h(x),0) such that

Blrxt = (1 —t)a+th*a, t €10,1]

has the properties (1) and (2) in Definition 1.4, and may not be contact.
Let ds = p*df, where df is a volume form on S'. For a sufficient large
constant N, the form

w =+ Nds

is a contact form on E(K). We can extend w to M smoothly, and then w
is a contact form on M supported by (F, ).
e By [2], there is the homeomorphism b : D — D such that

bop=poh.

In a similar way, we can construct a contact form wgy on 93 suppored by
the (trivial) open-book decomposition of S with fibers D x t and the

monodromy map b.

Proposition 2.2. Let (M,&) be a contact structure on M supported by (F, ).

Then there is a closed braid b ¢ $3 with axis L, and a simple cover p : M — §3
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branched over b such that F x t = p~*(D x t) for each t € [0,1]. A contact form

w = p*wp defines a contact structure £ on M which is isotopic to €.

3. RESULTS

Theorem 3.1. Let (M, &) be a contact structure supported by an open-book de-
composition (F,¢) of M, and ¢ a simple closed curve on F. There is a positive
contact structure ¢ on M isotopic to £ such that ¢ is a Legendrian curve in (M, &’)

if and only if ¢ is not null-homologous.

Corollary 3.2. Let K be a fibered knot in S with a fiber surface F' and a fibration
. If there is a non-seperating loop ¢ on F' such that a tublar neighbourhood of ¢

in F is an unknoted, untwisted annulus in S3, then &(F,p) 18 overtwisted.
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On the configuration space of points and the Casson invariant
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In this talk, we will construct certain 4-manifold X by using the configuration
space of points of an oriented closed homolology 3-sphere M and a trivialization
of TM. The main theorem is that the signature of X is equal to the Casson

invariant of M (up to multiplication by a constant).

ORGANIZATION

This note was made form the resume written by the speaker together with certain
additions and modifications based on the note taken by K. Ichihara. Added or
largely modified parts are Section 2, 3, 6, and Subsection 4.1.

1. INTRODUCTION

Let M be an oriented closed homology 3-sphere, and A(M) Casson invariant of
M. In this report, we construct some topological invariant I(M) such that
o I(M)=AM) (Theorem1).
o I(M) = 7%, where Xy,, is a certain 4-dimensional submanifold
embedded in the two point configuration space of M \ {p} (Theorem 2)

And we will also see outline of the proofs of these theorems (§ 8).
Roughly speaking, A\(M) is defined by

l# Hom(my (M), SU(2))*
2 conjugacy

AM) =

and it is known that A(M) is determined by the Dehn surgery formula (c.f. [1]). On
the other hand, A(M) is the only one non-trivial invariant which is finite type of

degree 1 for both the algebraically split link surgery and Torelli surgery.

lGraduate School of Mathematical Sciences, Tokyo University, 3-8-1 Komaba, Meguro,
Tokyo 153-8914, Japan. E-mail:  tetsuhir@ms.u-tokyo.ac.jp URL: http://www.ms.u-
tokyo.ac.jp/ tetsuhir/
Keywords and Phrases: Casson invariant, signature, configuration space, framing, finite type

invariant.
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Let X be an oriented compact smooth spin 4-manifold with boundary 0X = M,
such X always exists. Rohlin invariant u(M) of M is defined by
Sign X
8

u(M) = (mod 2),

and there is a formula
AMM) = p(M) (mod 2).
Namely, A(M) is an integral lift of Rohlin invariant p(M).

On the face of things, the definitions of Casson invariant and Rohlin invariant
looks very different: one is come from the flat SU(2) connections, and the another
one is from 4-dimensional. But some relations between Casson invariant and the
signature of 4-manifolds are known. Here are such two examples as follows. Let
V(ay,...,a,) be the Milnor fiber of the Seifert homology 3-sphere ¥(a1,...,a,),

then
SignV(ay,...,an)
8
([7],18]). The another example is about Ohta’s invariant 7(M) (preprint). He con-

=AZ(a1,...,an))

structed some oriented compact smooth 4-manifold N with boundary ON = M
in the moduli space of anti-self dual connections on some principal SU(2) bundle
P — M x S', and proved that N is spin and
Sign N
8

is an topological invariant of M. Hence, one can see that

(M) =

T(M) = (M) (mod 2).

It is unknown if 7(M) = A(M).

As mentioned above, this report gives some topological construction of Casson
invariant by using the configuration spaces of 3-manifolds. This results depends on
the work by Kuperberg-Thurston [11] that relate our invariant to Casson invariant.
Our construction corresponds to the first non-trivial term of their invariant. In [11],
they gave a purely topological definition of the perturbative quantum invariants
of links and 3-manifolds. Ordinarily, this kind of work for the definition of the
perturbative quantum invariants of 3-manifolds and links is by Kontsevich[10]. The
related works, which uses the configuration spaces, was given by Axelrod-Singer [2,

3], Bott-Taubes [6], later by Bott-Cattaneo [4, 5], and Kuperberg-Thurston.

2. BASIC DEFINITIONS

In this section we recall basic definitions and notations. Please refer ... for these

standard matters.
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2.1. Spin structure. We start with the definition of the signature of 4-manifolds.
Let X* be a closed orientable 4-manifold and Q : H*(X,Z)/1or x H*(X,Z) | Tor —
Z the intersection form. Then @ is a symmetric, nondegenerate unimodular bilinear

form. Set by (resp. b_) be the number of positive (resp. negative) eugenvalues of

Q.
Definition 2.1 (the signature of X). Sign X :=b; —b_

Ezxample 2.2.

e X =CP? Then Q =1 (ie. z-z =1 for Vz), and so, Sign(Q) = Sign(1) =
1.

0 1
oX:S’%XS%. Thean(l 0>,andso,Sign(S%><5’22):1.

e X = K3 surface (or Kummer surface). Let

—2 1
-2 1
1 -2 1
1 1 -2 1
Ex =
1 -2 1
1 -2 1
1 -2
1 -2
0 1 )
and then, Q = Es ® Es ® 3 . Thus Sign(X) = by —b_ = —6.
1 0

Concerning the signature of 4-manifolds, one of the most famous theorem is:
Theorem (Rohlin). If X is smooth and spin, then Sign(X) =0 mod 16.

A spin 4-manifold is defined as follows.

Let m: E — X be a vector bundle over a smooth manifold X and {Uy} an open
covering of X; X = J, Ux. By definition of a vector bundle, E > 71 (Uy) = Uy x
R™ (n denotes the dimension of the fiber) and there exists g,,,, : UNV — GL(n,R)
satisfying g, 9w 9wy = 1 for UNV NW # ) (called the cocycle condition). Up
to homotopy we may assume that each g, € SO(n) C GL(n,R).

Recall that 71 (SO(n)) = Zs for n > 3. We define Spin(n) by the double covering

m: Spin(n) 5 SO(n).
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Definition 2.3 (spin structure on a vector bundle E, (I)). A spin structure o on
E is defined as o = {g,, } such that g,, : UNV — Spin(n) with 7(g,,) = g,
and g, 9vw 9wy = 1 € Spin(n).

Definition 2.4 (spin structure on a vector bundle E, (II)). A spin structure o on

E is defined as a spin structure o on E & RY for some N > 2.
It is known that these two definitions make no contradiction.

Definition 2.5. A smooth manifold X is spin if its tangent bundle admits a spin

structure.

Here we give some remarks. Given g,,,, : UNV — GL(n,R) and 71 (SO(n)) = Zo,
a local lift g, : UNV — Spin(n) always exists. For such local lifts, set h,,,, =
JovIvwIwe - Then {h, .. } gives a cocycle in C?(X,U, Zy) with some open covering
U of X. This cocycle represents the cohomology class in H2(X,U,Zs), which is

equal to the Stiefel-Whitney class wy. Thus we have the following;:

Fact. On a vector bundle m : E — X over a smooth manifold X, there exists a

spin structure if and only if the Stiefel-Whitney class wy € H*(X,Zg) is zero.

From this fact, we can observe that a spin structure o on a vector bundle F over
X gives a ‘trivialization’ next to the ‘orientation’. That is; by using o, one can
have E|x@ = X@ x R™, where X2 denotes the 2-skeleton of X endowed with a

CW-complex structure.

2.2. Rohlin invariant. In this subsection we introduce Rohlin invariant of 3-
manifolds.
Let M3 be an oriented closed homology 3-sphere (i.e., H.(M,Z) = H.(S3,Z)).
Note that
e M is spin, for wy € H*(T'M,7Zs) = 0, and
e the spin structure on T'M is unique up to homotopy, for the difference
dif f(o1,02) of the spin structures 01,02 on TM lies in H'(X,Zz), which

actually vanishes for a homology 3-sphere M.

Moreover we have the following facts.

Fact.

(1) There exists an oriented compact smooth spin simply-connected 4-manifold

X such that 0X = M (originally due to Thom,).
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(2) For such X, the intersection form Q : H*(X,Z) x H*(X,Z) — Z is non-
degenerate, and Sign(Q)) =0 mod 8, i.e., SignT@) € Z. This follows from
the facts that M is spin and an algebraic property of Q: @ is an even form.

Now we define:
Definition 2.6 (Rohlin invariant u(M) of M). u(M) := Si%(x) € Zs

This u(M) is well-defined: It suffice to show that it is independent from the choice
of the 4-manifold with boundary M. Let X’ be another 4-manifold with 90X’ = M.
By the Novikov additivity, Sign((—X’) U X) = — Sign(X") + Sign(X) holds, where
— X' denotes a copy of X’ with opposite orientation. This Sign((—X’) U X) have
to be zero modulo 16 by the Rohlin’s theorem, since (—X’) U X is a closed smooth
spin 4-manifold. It concludes that Sign(X”’) = Sign(X) mod 16, and so, SignT(X) =
Sign(X’)

SienX) ¢ Z,.

2.3. Casson invariant. In this subsection we give some facts and a conjecture
about Casson invariant, which is a motivation of my work.

As in Section 1, the original definition (due to Casson) of Casson invariant A(M)
is given, very roughly, by
1 4 Hom(7y (M), SU(2))"™

AM) ==
(M) 2 conjugacy

This is shown to be an integer-valued topological invariant for oriented closed ho-
mology 3-spheres.
In present, another definition is also known. This is axiomatical; A(M) is deter-
mined by the following inductively.
e \(S%)=0
o \—M)=AM).
o A My#Ms) = AN(M1) + A(Ms) for the connected sum M;#M,.
o AM(Mg) — AM) = $A% (1) (Dehn surgery formula).
See [1] for example.
As we stated in Section 1, Casson invariant A(M) can be regarded as an integral

lift of Rohlin invariant p(M): that is, a formula
AMM) = p(M) (mod 2)

is known.
Since Rohlin invariant is defined as u(M) = 3 Sign(X) mod 2 for some 4-

manifold X with boundary M, it might be possible that one can find a 4-manifold
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X with boundary M such that A(M) = gu(M). Concerning this observation, the

following conjecture is known.

Conjecture (Casson Invariant Conjecture (Neumann)). Signature of (some spe-
cial) Milnor fiber of M is equal to 8A(M).

See *** for detail about this conjecture. Some partial positive answers to the

conjecture have been obtained.

Theorem (Fintushel and Stern [7]). Consider f(X,Y,Z) = XP + Y1+ Z" with
p,q,r coprime integers. Let V(f) == {(X,Y,Z) € C3 | f(X,Y,Z) =0} C C3 and
S(p,q,r) == V(f) N S®. Here we regard S° as the unit sphere in R® = C3. It is
shown that the map f

. 85\% r) — St
7] \ X(p,q,7)

gives a fiber bundle structure. After suitable compactification, the fiber (called Mil-
nor fiber) is regarded as a 4-manifold X with 0X = X(p,q,r). Then

Sign X
AE(p.0,1) = =5

holds.

In other words, for X(p, q,r), the signature of a Milnor fiber X is a topological

invariant which is an integral lift of Rohlin invariant.

3. IDEA

What we see in this section is the background idea to get an invariant which is
an integral lift of Rohlin invariant. To do this, we use the two point configuration
space of a 3-manifold. See the next section for precise definitions of the terms in

the following.

3.1. Finding X}l. Let (M, f) be a 3-manifold M and a framing f of the ‘punctured’

M. Consider the two point configuration space

CoM):=Mx M\ (xx MUM x xU{(x,2)})
of ‘punctured’ M, which is assumed to be compactified ‘suitably’. Thus this is a

compact 6-manifold with non-empty boundary.

We will construct a ‘partial Gauss map’ ¢¢: U — S?, where U is a complement

of a certain compact subset of Co(M) defined by using f. Intuitively this map

means
y—z
_ 2
Iy — |
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By the way of compactification, this map naturally extends to the map of 602(M ).
Now we suppose the existence of a map
pr: Co(M) — 5°
such that ‘;’f|802(1\2) = . Taking a regular value v € S? of @y, set
X;=¢;'(v).

Then X is an oriented compact smooth 4-manifold satisfying

(1) 0Xy = M#M#(—M),

(2) Xy is spin,

(3) the signature oy of X; depends only on (M, f).

The property (1) is from the definition of ¢y. Since the normal bundle of X; C
Cy(M) and the tangent bundle T'Cy(M) are spin, X is also spin, so we have (2).
Another manifold X’ come from another map ¢ : Cy(M) — S? is cobordant to
Xy relative to the boundary, hence. Consequently, o is an invariant of a pair

(M, f), and we obtain (3). By the definition of Rohlin invariant, one can see
% = p(M) (mod 2).

Therefore, we get an integral lift o¢/8 of Rohlin invariant.

3.2. Finding ¢¢. In this subsection we explain an idea to find @¢: Co(M) — 52

such that ¢f|802(1\2) =py.
Suppose that ¢; as before is already given. We want to apply ‘obstruction
theory’.

Lemma. we have

- . . Z  i=4,6
Hi(Co (M), dCo (M) = Hi (M x M, A) = '
0 otherwise

where A =% x MUM x «U{(z,z)}.

This follows from

/ 1=1
H' (M xM)=1< 7> i=4,6
0 otherwise
and
Z i=1
Hi(A)=< 73 i=4
0 otherwise
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By the lemma above the primary obstruction class o*(¢y) lies in
HY(Co (M), 0C (M ); w3.52) =2 HY(Co (M), 0C(M); Z) = 7.

If we can establish o?(pf) = 0, i.e., we obtain <p§c4) : X® — §? such that
‘P(f4)|602(1§1) = ¢y, where X denotes the 4-skeleton of (Cy(M),dCo(M)), the

secondary obstruction class 0% (cp(f4)) lies in
H*(C(M),0Co(M); m55%) =2 H*(Co(M),0C(M); Zs) = Zs.

We will in fact achieve o*(¢f) = 0. However, unfortunately, we cannot get rid

of 08 (<p§c4)), and so, we will take another way to construct our invariant.

4. CONFIGURATION SPACE OF POINTS AND (GAUSS MAP

In this section we first introduce the two point configuration space of a ‘punc-
tured’ 3-manifold and compactify it. Then we define a ‘partial Gauss map’ ¢ as

explained in the previous section.

4.1. Cy(M) and dCy(M). The two point configuration space Cy(X) of a space X
is defined by

02(X) = {(I7y) ‘ T,y € X7 € %y}

Let M be an oriented closed homology 3-sphere and set M=M #R3. We com-
pactify Co(M) by the method of Bott-Taubes’s paper.

Let A% := {(z,z,2)} C M x M x M. This can be regarded as an image of a
smooth embedding of M into M x M x M. Alsolet A? := {(z,z,v), (z,y, ), (y,z,7)} C
M x M x M. Obviously A3 is a subset of A2, Thus A% N (M x M x M \ N3) is
smoothly embedded into M x M x M \ N3, where N3 denotes an open neighbor-
hood of A3. Let Ny denote an open neighborhood of A2 N (M x M x M \ N3). Set
CS(M) := xM x M \ N3\ N3, which in fact gives a compactification of Cs(M).

Now we define a compactification C5(M) of Cy(M) as the following diagram

comimutes.
Cg(M) — C§(M) > (z,y, 2)

| |

{p} — M3z

This compactification gives a homotopy equivalence between C§(M) and Co(M).

In the following we abuse Ca(M) to also denote C§(M).
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4.2. The map ¢s: 0C5 (M) — S2. In this subsection, we construct a “partial
Gauss map” pr: U — 52, where U is a complement of a certain compact subset of
Cs (M ) by using some additional data f. By the definition of the compactification
of Co(M), ¢ 1 defined on U naturally extends to dCy(M), which gives a fiber bundle
structure of 0Cs (M) over S2.

At first we give ¢y for the Euclidean space R? as an easiest, but instructive
example. Let

ops : Co(R?) — §2

be the map defined by

y—x
@RS(z,y):m

for (x,y) € Co(R3) which is called Gauss map. There exists a homeomorphism
Co(R?) 2R3 x (0,00) x S%,  (x,y) — (z,7,0)

by the corresponding

coety_y—af
2’ 2 ’

Immediately, the pre-image ¢gs ~*(v) of a point v € S? is contractible. In particular,

U = PR3 (:an)

its signature is zero. As we will see later (Theorem 2), this vanishing corresponds
to the fact A(S®) = 0.

Let M be an oriented closed homology 3-sphere and set M =M #R3. Let
f: TM — M x R3 be a framing of TM. In this report, we always assume that any
framing of TM is compatible with Euclidean framing fgs over the complement of
some compact subset of M. Now, we define a map ¢y: U — S? as follows, where

U =U; UUyUUs. Each U; is defined in later three cases.

4.2.1. Two points are very close. First, let

Ur = {(z,y) € Co(M) | d(z,y) <&},

where d is a metric of M and € > 0 is small enough. Suppose (x,y) € U;. Then we
can define the “direction” ¢ (z,y) € S? from z to y by using f.

4.2.2. one point is in the end of M. Suppose that M is obtained by connecting a
3-disk D, € M around p € M and D?® C R® around 0. Let V C M be the open
subset corresponding to M \ D,, and W C M corresponding R3 \ D3. Let

Uy =(VxW)U(WuV).

We assume that f is coincides with frs on some open set including the closure of

wW.
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If x € V and y € W, then define ¢;(z,y) = y. Note that this definition makes

sense, because we can think y as a point in R3. Also define ¢ (y,z) = —y.
4.2.3. Both two points in the end. Let
Us = C2(W),

and suppose (z,y) € Us. In this case, we define

y—x
ly — =l

(Pf(‘rvy) =

From the way of compactification, we have the following.

Lemma. The map ¢y: U — S? naturally extends to ¢z : dCs(M) — S? (we abuse
the notation ¢s). The fiber ap;l(p) for every reqular value p € S? of p: OCs (M) —
S? is diffeomorphic to M#M#(—M).

5. TWO NUMBERS dj AND oy

In this section, we define two integers dy and oy used to define the invariant
I(M).

Co(M, f) = S? U, Ca(M)
be the attaching space by the map ¢y: dCy(M) — S2. Using the long exact

sequence of (Cy(M, f),S?), we have an isomorphism

Z, ifk=0,2,4,6

HY(Co (N, ); 7) =
0, otherwise.
The following lemma define the integer dy, this definition is similar to the coho-

mological definition of the Hopf invariant(c.f. [9]).

Lemma 5.1. There exists a graded ring isomorphism
H*(Co(M, f); Z) = Z[a, b] /(a* — dgb, b?)
for some integer d¢, where dega =2, degb = 4.

This number d is nothing but the Casson invariant for the framed 3-manifold ([11]).
Let Lg> — S? be a complex line bundle with Euler number 1, and sg> a generic
section. We can assume that sg2—'(0) consists just one point. Set Ly = ¢¢*Lge,

sf = @s*sg2. Then sy : dCo(M) — Ly is a generic section, and s;~1(0)

M#M#(—M). Since the inclusion dCy (M) — Cy(M) induces an isomorphism on
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H?, there exists only one isomorphism class of a complex line bundle L r—C (M )

such that EfL?Cz(M) = Lf.

Ly — Ly

| |

OCH (M) ——— Co(M)
Let 3 : Co(M) — Ly be a generic section such that §f|602(1§[) = s¢. Let
Xy = 5;1(0)7

then X is an oriented compact smooth 4-manifold with boundary 0X ; = M#M#(—M).
Define

o¢ = Sign Xy.
Another choices §} give the same value of ¢, because a generic homotopy between

8¢ and % gives a cobordism between Xy and X7.

Definition 5.2.

_df—oy
8
I(M, f) = (I(M),dy)

1(M)

6. LEGITIMACY OF INVARIANTS

We have just defined our ‘invariant’ I(M ), which will be shown to be an integer-
valued, topological invariant of M (Section 8) and to be equal to Casson invariant
of M (Section 9).

In this section, we try to give another ‘definition’ of I(M, f), which could explain
the legitimacy of I(M, f). The idea behind the explanation was given in Subsection
3.2. Please remark that this section contains some unreliable arguments.

Now we have the map ¢f: dCo(M) — 52 and the attaching space Co(M, f) =
5% Uy, Cy(M) by ¢s. This Co(M, f) is smooth except on S2. In fact, the ‘normal
disk’ at p € Co(M, f) \ S? is regarded as a cone over a generic fiber gp]l(p) x~
M#M#(—M). Here we assume that:

Assumption. The attaching space C‘g(M, f) is smooth everywhere.

Let Ly — Co (M . f) be the complex line bundle naturally obtained from L F—

Cy(M) and Lg> — S?, and then, consider the spin bordism class of Ly — Co (M, f).
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The n-dimensional spin bordism group is defined by

Z : spin closed smooth n-manifold } /
h:Z — X, continuous map cobordant
Here (Z1,h1) is said to be cobordant to (Za, hs) if there exists a spin (n + 1)-

manifold W and a continuous map h: W — X such that W = Z; IT (—Z,) and
hlow = hi 1T ho.

QP (X) = {(27 h)

Ezample 6.1. Define Q3P := Q3P (x). Then the following table is known.

noJo1 2 34 567
Qrn|Z Z, Z, 0 Z 0 0 0

In detail:

e The generator of Q""" = 7, given by Lie framing, i.e., the framing obtained
from a framing at one point by distributing by the elements of the Lie group
St

o QP = 0 indicates that there always exists an oriented compact spin 4-
manifold bounded by given closed 3-manifold.

e The isomorphism Q37" = Z is given by the correspondence X* — —S‘gl‘éx )

In the case of n = 6 and X = CP*° we have the following.
Proposition. Q" (CP®) =72 & Z

The group Q5P (CP>) is called the n-dimensional spin bordism group decorated
with a complex line bundle, for there exists a correspondence between the complex
line bundles over Z and homotopy classes of continuous maps of Z to CP*. Using

this correspondence, the isomorphism in the proposition above is given by
d—o
[L— Z]— ( 3 ,d)

where Z denotes a 6-manifold, L a complex line bundle over Z, d := [, cl(L)3 with

c1(L) the first Chern form, and o := Sign s~1(0) with s: Z — L a generic section.
In our setting Z = C'Q(M, f) and L = Ly, this value (%’ d) is actually coinci-

dent with I(M, f) = (Y5, dy).

7. STATEMENTS AND EXAMPLES

Let (M, f) be an oriented closed homology 3-sphere with a framing of TM. Let

I(M) be the number defined in Definition 5.2.
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Theorem 1 ([14]). I(M) is a Z-valued topological invariant of M, and it equals

to Casson invariant of M.

Now, we see some examples of the calculations of I(M) and I(M, f).

7.1. Case of M = 53 with Euclidean framing. Let M = $3, then M = R3.
Let fgs be the Euclidean framing on 7R3, and we have ¢ fos = PR3-
One can take the line bundle L fus = Oy (M) as the pull-back bundle ¢ fos " Ls2,
and the pull-back section
ngB = WIE3SSZ : CQ(M) - Efms
is generic. If v = sg; (0), then we have
Xfpa =37, (0) = ops (v) = RY,
and so, we obtain o, = 0.
Since Co(R?) = §% x S2, we have the ring isomorphism
H*(Co(M, f):Z) = Ry,
this implies dy , = 0. Therefore, we have

dy, —0o 0-0
1(5%) = et — == — 0

and
I(Sgaf]R3) = (I(M)7de3) = (O’O)'

7.2. Case of M = S3 with any framings. Let f be an any framing of R?
which is always obtained by f = ¢fgs for some compact supported map g: R3 —
SO(3). Any framings on R3 are classified by the degree degg € Z of the induced
homomorphism g*: H3(SO(3);Z) — H3(R3;Z).

Let n = degg. The map ¢f: 9C> (M) =~ §3 x 52 — S? essentially equals to the

evaluation map ev, as follows:
evg: S% x % — S2 (x,v) = g(x)v

Therefore, we have Co(M, f) = S(E,), where 7: E,, — S* is a real vector bundle
with ([S*],p1(E,)) = 4n and S(E,,) the associated sphere bundle. Calculating the
characteristic classes of T'S(E,,) and 7*E,,([13]), we obtain that df = n and oy = n.
This implies that

(5% f) = (L=

and of course, we obtain 1(S%) = 0 again.
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7.3. Connected sum. Let (M, f1), (Ma, f2) be framed manifolds. Set M =
Mi#Ms, f = fi#tfo. Let us think M; = Mi#R,, My = M>#R,, where

Ry = {(z1,22,23) | 21 <0}, Ro = {(z1,22,23) | 1 > 0},

and each f; is a faming over M, compatible with the Euclidean framing on the end.
Moreover, we suppose that M; is the connected sum at around a point in M; and

around (£R,0,0) € R; for some large number R > 1. Then we can take M as
Ml uvVu Mg

such that the M;i-part and Ms-part in M are very far each other, where V =
(—1,1) x R%
Next, we will construct ¢s: dCo(M) — S2. Define a map

Pij - (VUMZ')X(VUM]‘)\A—)SQ

as follows (i,j = 1,2, i # j). Let h: M — R3 be the map obtained by collapsing
each M;-part to (£R,0,0). Then ¢;;(z,y) is defined by

. Ih(y) = h(z)||
Let @y, : Co(M;) — CP? be the classifying map of Ly,. Let @s: Co(M) — CP? be
an extension map of ¢y obtained from ¢y , ¢, and ¢;;. Note that any two such
maps are coincide on these common domain. Let CcP? ¢ CP? be a submanifold
homologous to CP? that transversally intersect with CP' = S2 at one point v =

(1,0,0) € S2. There exists a generic section of the complex line bundle L¢ps — CcpP?

with ¢1(Leps) = 1 such that the pre-image of zero is CcP?. Hence
!
X;=0s(CP") = Xy 8 Xy,

this means o = oy, +0y4,. And also it is easy to see that dy = dy, +dy,. Therefore,

we obtain the following:
Proposition 7.1.

I(M, f) = I(My, f1) + I(Ma, f2)

I(M) = I(My) + I(Ma)
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7.4. Opposite orientation. Let M’ be M with the opposite orientation, and let
"= (=fi1, f2, f3) where f = (f1, f2, f3). By the definition of dy and oy, we have

df/ = —df, ofr = —0f.
This implies that

Proposition 7.2.

8. OUTLINE OF PROOF

8.1. Integrality of I(M). Since Q" (S?) = 0([15]), there exists an oriented com-
pact smooth spin 6-manifold Z with a complex line bundle Lz — Z such that

0Z = 0C5 (M), LZ|6CQ(M) =L;
and the image of the classifying map of Ly is contained in S2. Let

W:CQ(M) Uac2(1\;[) Z, LW:LfULf Ly —W.

Then, (W, L) is an oriented closed smooth spin 6-manifold with a complex line

bundle. Applying the index theorem to (W, Ly ), one can see that the integral

/ ch(Lw)A(TW)

is an integer(c.f. [12]). Here, ch is the Chern character and A is the A-genus. This
value equals to

Sign X
1() - =22
8
where Xz is the pre-image of 0 of a generic section, which is an extension of sf of
Ly, of Lz. Since Xz is spin and 0X z is a homology 3-sphere, we have Sign Xz =0

(mod 8). Therefore, we obtain the following proposition.

Proposition 8.1. The number I(M) is an integer.
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8.2. Topological invariance of I(M). Let f, f’ be framings of TM. There exists
a one-to-one correspondence between the set of homotopy classes of framings on
M and [M, SO(3)]e, i.e., the set of maps with compact supports. Thus f’ can be
represented by f/ = gf for some g: M — SO(3).

Then (M, f') =2 (M#5S3, f#gfrs). According to Proposition 7.1,

I(M, f') = I(M, f) + 1(S®,gfrs) = (M, f) + (0, deg g).
In other words,
dyr =dy +degyg, op =o5+degyg.
In particular, (M) does not depend on f. Therefore

Proposition 8.2. I(M) is an topological invariant of M.

8.3. Casson invariant. Kuperberg-Thurston showed that some value I; (M) is
Casson invariant by using the theory of finite type invariants of homology 3-spheres

in their paper [11]. The invariant I(M) is constructed as follows. First, define

1(M) = S(Co0T, ), ex(L5)°),

51(M) = 3 (X g, (TCo (M), ).

[\

And then I(M) is defined by

L(M)=L(M)—061(M).
Calculating characteristic classes, we have the following proposition.
Proposition 8.3. I, (M) = I(M).

By Proposition8.3, we obtain Theorem1. To prove that I(M) is a Z-valued

topological invariant, one only need Proposition8.1,8.2.

9. CASSON INVARIANT AS A SIGNATURE

By §8.2, we obtain the following proposition.
Proposition 9.1. There exists only one framing far of TM such that ds,, = 0.

Therefore, we have

I(M) _ dfM go—fM _ 70—);»1'

Theorem 2.

A(M) = f%
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A surgery description of homology solid tori and its applications
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ABSTRACT. It is known that every homology solid torus can be obtained from
the standard solid torus D? x S! by surgery on a suitable boundary link. In
particular, every knot K in S® has a surgery description (k; (k;, €i)i=1,2,....,m),
where k is a trivial knot, (k;,e;) is an e;-framed knot in S3 — k with e; = %1,
which satisfies the following properties:
e ki1, ..., km bound mutually disjoint genus one Seifert surfaces S, ...,
Sm in 8% — k,
e there non-separating simple closed curves x;, y; on each S; such that
— x; intersects y; transversely in a single point,
— x; bounds a disk D; with D; N S; = 0D; = x; which meets k in
a single point,
— the linking number lk(y;, k) = 0.
o ax(K) = =37 eilk(yi,y;h).
Using such a surgery description for K, we study the relation between the
Alexander invariant of K and the Casson-Walker-Lescop invariant of the cyclic

covering spaces of S3 branched along K.

1. NOTATION

M, H : an oriented 3-manifold, an oriented ZHS3,

K C H: aknot in H,

L (resp. K = (K,7)): arational framed link (resp. knot) in H,

X' = x(X; L): the object obtained from X by surgery along (K,7), and we call
(X; L) a surgery description for X',

lk : the linking number,

A: the Casson invariant,

Agcp(t): the symmetric Alexander polynomial of K in H,

¢ : My — H: the r-fold cyclic cover of H branched along a knot K C H.

lemail: yukihiro@math.keio.ac.jp, Department of Mathematics, Faculty of Science and Tech-
nology, Keio University, Hiyoshi 3-14-1, Kohoku-ku Yokohama 223-8522, Japan.
2See [20] for the details.
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Lemma 1.1. Let K; U Ks be a link in an ZHS® H. Let (¢,1/n) be a 1/n-framed
knot in H disjoint from K3 U Ko. Then in H' = x(H; (¢,1/n)),

Ik (K1, Kb) = kg (K1, Ko) —n - lkg (K1, 0) - kg (Ko, (),

LS

where K| = x(K;; (€,1/n)).

K Ky K1 K
In particular, when 1k(K;, ¢) = 0, we have

kg (x (K715 (6,1/n)), x(K2; (4,1/n))) = kg (K7, Ka).

Definition 1.2. A link L = K1 U K> U --- U K, is called a boundary link if K;

bound mutually disjoint compact, connected, oriented surfaces S;.

For a boundary link, we have lk(K;, K;) = 0. Furthermore, by using Lemma 1.1

we have that Ax cu(t) = Ay(k;i(Kie)Cx(Hi(Ks ) (t). The framing number for

K; is unchanged by surgery along other components.

2. BOUNDARY LINKS AND THE CASSON INVARIANT

In 1985, A. Casson? introduced an Z-valued invariant X for oriented ZHS?3s which

satisfies the following properties:
. )\(53) =0(NH)=0if m(H)=1)
AN—H) = —A(H)
AMH1#Hz) = A(Hy) + A(Hz)
AX(H; (K, 1/n))) = AH) = §0fccpg(1) *°
3See [1], [16]

4This is called the Casson surgery formula. See [6] for the link version.

5This is the only restriction in some sense. That is, given two knot-Alexander polynomials
A1(t) and Ag(t) with e1A” (1) = e2A”(1), there are two knots K1, Ko in S3 with Ak, (¢) = Ai(t)
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Note that 1A% (1) = az(K), where a,, denotes the nth coefficient of the Conway
polynomial VK(Z) = AK(t”t*l/z—tl/?:z'
Let H be an ZHS?, and

(Kl,El) (KQ,EQ) (anl,enfl)

H=H — Hy — ... — Hn(Kn—£>n)

H/
a sequence of surgeries, where K is a knot in H; and ¢; € {—1,+1}. Then there is
a boundary link® L = K| U---U K/, in H such that

X(H7 (Kiagl)v (KéaEQ)v e 7(K':w€n>) = Hl

Then by the Casson surgery formula, we have that
AH') = AH) = eiaz(K]).
i=1

3. SURGERY DESCRIPTIONS OF KNOTS AND CYCLIC BRANCHED COVERS

Let ¢ : M}y — H denote the r-fold cyclic covering branched along K. We can
compute |Hq1(M};Z)| from the Alexander matrix. Hoste showed the following:

Proposition 3.1 ([6, Theorem 3.2]). Let DK be the untwisted doubled knot about K
in H. Then A(M5 ) = A(H) + 2az(K).

Recall that Apg(t) = 1. Thus, we see that A(M}) cannot be computed from
Ak (t) in general.

Let KU¢ be alink in H with Ik(K, ¢) = 0. Let KT denote the preferred longitude
for K. Namely lk(K, K*) = 0. Then in M, ¢~!(K) consists of r components. Let
K be a component of ¢~ (K) which forms a knot in M. Let K+ be the component
of ¢™1(K™*) corresponding to K.

Put o, (K,f) = lk(K,K+). This is an even integer’. If ' > (the wrapping
number), then a, (K, ¢) = (const).

2

such that x(S3; (K1,e1)) = x(S%; (K2,¢2)) [19, Theorem 1.1]. Can you construct three more
knots?
6In [11], C. Lescop showed that when A(H’) = A(H) there is such a boundary link in H with
Ag(t) = 1. See (8], [19] for more generalization of this result.
"Exercise: Relate ar.(K,#) to the Alexander matrix of the knot x(K, (¢, £1)).
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For this Whitehead link K U ¢, we have a,-(K,£) =2 (r > 1). In general, Az (t) #
Ak (t) (even if o, (K, ¢) =0, even if K U/ is a boundary link.)

~ e

Ak (t) =1 (K is a trivial knot) and Ag(t) = 1+ 2(t1/2 —¢=1/2)2, 8

Theorem 3.2. Any knot K in an integral homology sphere H has a surgery de-
scription (k; (ki,€:)i=1,2,...n), where k is a trivial knot in S3 and k;’s are mutually
disjoint knots in E(k), with the following properties:

~
~

e ¢, € {—174—1}.

o ki, ...kxy (N <n (N =mn when H = 53)) bound mutually disjoint genus-
one Seifert surfaces S;’s in E(k) on which there are non-separating simple
closed curves x; and y; such that:

— x; intersects y; transversely in a single point,

— x; bounds a disk D; with D;N.S; = 0D; = x; which meets k in a single
point,

— Ik(yi, k) = 0.

e Each k; (N < j <nif N # n) bounds a Seifert surface S; disjoint from &
such that

— 1lk(k, £) = 0 for each simple closed curve £ on S,
- 51, S, ..., S, are mutually disjoint,

e ax(K)=-— Zfil eilk(yi, y;"), where y;~ denotes the push-forward of y; with

respect to S;.

8This contradicts the “statement” of [2, Proposition A.7].
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o MH) =3y ciaz(ks).

To illustrate usefulness of such a surgery description, we show the following:

Theorem 3.3. Let K be a satellite knot about a companion C, with the pattern
(P, Cp). When the winding number is zero,

A My) = A Mp) — ra,(P,Cy)az(C).

(2)-E5

For the surgery description (k; (k;,€;)i=1,2

n), in M5 the r copies (k;,&;); of

.....

(ki,ei); give a sequence M} — -+ — Mpy.. Tt is easy to see that 1k(z;,xt;) =
a,(P,Cy) and A, () = 1+ (P, Co)lk(ys, y ) (¢'/2 — t71/2).

4. REALIZATION PROBLEM

Exercise 4.1. For any integer A, there is a knot K in S3 such that Ag(t) = 1
and A(M};) = 2rA for any natural number » > 1. (Hint: Use Hoste’s theorem
(Proposition 3.1).)

As an application of Theorem 3.3, we have the following:

Proposition 4.2. Let rg be a natural number, and A an integer. Then there is a
knot K in S® such that Ag(t) = 1, A(M%) = 2r\ for any natural number r # 1,
ro, and A(M;2) = 0.

Problem 4.3. Let K be a knot in S3 with Ag(t) =1 (or az(K) = 0.) Then A\(M%)
is divided by 2r. (For unknotting number one knots with Ak (¢) = 1, this problem

is true.)

Exercise 4.4. Let K be a knot in S®. Then H;(M%;Z) has no elements of order
two. Namely, the order of Tor(H;(M%;7Z)) is odd.

Exercise 4.5. Given a finitely generated abelian group G without elements of
order two, there are knots K in S® with Hy(M%;Z) = G.

Exercise 4.6. Study the above propositions for 3-fold cyclic branched covers.
(Hi(M3;Z) = G + G, |Tor(G)| is odd.)
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On the Khovanov invariant for links

Norihisa Teshigawara !

ABSTRACT. In 1999, M. Khovanov constructed an invariant of oriented links.
It is a family of (co)homology groups whose graded Euler characteristic is the
Jones polynomial. Though his definition is algebraically very complicated,
O. Viro simplified it in 2002. In this talk, I will introduce the Khovanov

invariant defined by O. Viro and report its related topics.

1. THE KHOVANOV INVARIANT DEFINED BY O. VIRO

Definition 1. Let D be a diagram of a link in S3. We exchange a neighborhood of
each crossing point of D for either of the following two pictures on the right side. It

is called a Kauffman state or a state of D for short that the disjoint circle(s) given

N

N
1-smoothing

by exchanges like this.

Example 1. The states of the left diagram are like these.
00 110

/O
/

O B

Definition 2. Let s be a state of D. If we assign a plus or minus sign to each

circle of s, it is called an enhanced Kauffman state or an enhanced state of D or s
for short.

IDEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY, 2-12-1,

O-OKAYAMA, MEGURO-KU, TOKYO, 152-8550, JAPAN. E-mail: teshi-@math.titech.ac.jp
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From now on, we assume that links are oriented and crossing points of each

diagram are enumerated by natural numbers 1,2,--- ,n.

Definition 3. Define w(D) :=#{ X} —#{ >} and o(s) := #{X~) (}-#{<~}.
Let 7(S) be the summation of the signs given to the circles of an enhanced state

S. Then,

Khovanov chain complices

Definition 4. We call the following three free abelian group a Khovanov chain
group respectively.

C(D) == { Y aSi|a € Z, S; : an enhanced state of D },

Ci(D) := {cl: € C(D)|G = Xl:alSl,i(Sl) =i},

CH(D):={G e CY(D)|G = Xl:alSl,j(Sl) =j}

Definition 5. A homomorphism 9 : C(D) — C(D) is defined as below by the
incidence numuber (57, S,,). (S, Sm € C(D).)

8(2 alSl) = Zal(Sl . Sm)Sm
l

L,m

(=1)"  ((Si, Sm) satisfys Condition 1, 2)
(S1:Sm) = )
0 (otherw1se)
Condition 1. Only at one crossing point of D (Let it have number k), the
smoothings of S; and .S,, differ and at this crossing point the smoothing of S is 0,

while the smoothing of .S,, is 1.

Condition 2. The common circles of S; and S, have the same signs, and on the
signs of the circles of S, S, adjacent to the kth crossing point, they satisfy one of

the situations in the next page.
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t is the number of 1-smoothings in S; numerated with numbers greater than k.
Lemma. 0°t17 0 9% = 0.
Notation. H»/ (D) := Kerd™ /Imd*~17

Definition 6. Let L be an oriented link in S® and let D be a diagram of L.

(1) The isomorphism class of H%J(D) is called the Khovanov homology of L and is

denoted by H*J(L).

(2)Kh(L)(t,q) := > t'¢’ rank H"I(D). The polynomial is called the Khovanov
i,jEL

polynomial of L.

Theorem. Kh(L)(—1,q):= J(L)(q).

(J(L)(q) is a version of the Jones polynomial such that < () >=1.)

2. RELATED TOPICS

- A categorification of the Kauffman bracket skein module

F ZaEfhrsn/zmhm, 1 280 XEE 95, M. M. Asaeda, J. H. Przytycki.
A. S. Sikora 3 ROIHLFEHZET, O. Viro IZ & 5 Khovanov homology DE s % 12,
Dl &b F x IT'ICEAT % Kauffman bracket skein module @ categorification 12 B{
Llzk>TH 5,

- The Khovanov polynomials for the links with trivial Jones polyno-

mials

A2 H D Jones ZIEAN trivial TH 5 &1, HBLKRAEH D Jones ZHIA & —
KT B2 THD LT 5, M Thistlethwaite A3, 2001 41 Jones ZIAFAS trivial
W5 KO BATRVEAE OH%Z 3 >RELZ, 215 D Khovanov ZIHEIZ
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A. Shumakovitch 23ER L 7z KhoHo # W CEIET L Z MRz, 32 b, A
WICH 7 5 non-trivial 7R ZIEICR 5,

A categorification of the HOMFLY polynomial

P. Ozsvath, Z. Szabé WML L 7= knot Floer homology 13, #TEIT R RS
D72 H% Khovanov homology & JEHICI/ZMEE 2 Hr> Tnvb, HIRIE. HE4AT—
B % B % & Khovanov homology Tl Jones ZIHI\ & —%(9 5 D 7248, knot Floer
homology Tl Alexander ZIEHA & —E( 95, F-URECRHICEAL T
Khovanov homology(? < > 7 ) 1% Jones ZIHNX L fE O H OFF 5 EL CTHRE T E L DI
%t L. knot Floer homology |% Alexander ZIHX L 5O H O EH THIETE 5, 2
D7z®. P. Ozsvéth, Z. Szabé OFi3IcB T B0t EE 2 2 DILHARR
ZETHDH ] VIR RS TO,

Z L C. &I M. Khovanov & L. Rozansky I1C L5 3HE T, ZHICIEREISEWY
DERERRK L 722D preprint MFE I Nz, BARMICIE. n Y2 OBFIC Jones ZI1H
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Invariants of 3-manifolds
formulated on their presentatinos
given by 3-fold branched covering spaces
over the 3-sphere
Eri Hatakenaka'

ABSTRACT. By a well-known theorem of Hilden and Montesinos, every closed
oriented 3-manifold is an irregular 3-fold branched covering of S branched
along a knot. Piergallini introduced covering moves, which relates such branch
sets representing the same 3-manifold. Hence we can regard the branch set
as a presentation of the 3-manifold. We give new invariants of 3-manifolds
using this presentation. Then we construct the Dijkgraaf-Witten invariant as

an example of the invariants.

1. INTRODUCTION

By a well known theorem of Hilden[3] and Montesinos [4], every closed oriented 3-
manifold is a 3-fold simple branched covering of S? branched along a link. Piergallini
[5] introduced the covering moves, which relate two such branch sets representing
the same 3-manifold. Hence we can regard the branch set as a presentation of the
3-manifold. In this note we give new invariants of 3-manifolds formulated on the
presentations, which are analogous to the quandle cocycle invariant introduced in

[1]. Then we construct the Dijkgraaf-Witten invariant as one of the invariants.

2. COVERING PRESENTATION

For a 3-manifold M a map p : M — S will be a 3-fold branched covering
branched along a link L C S3, if

(1) the restriction p: M — p~1(L) — S3 — L is a usual 3-fold covering, and

(2) any point z € f~(L) has a neighbourhood homeomorphic to D x Z, where D
is the unit disc in C and 7 is an interval, on which p has the form p: D x I —
D x I, (zt) — (2™, 1), for n € {1,2,3}.

Such a link L is called the branch set of p. To any 3-fold branched covering p :

M — S3, we can assign a homomorphism 71 (S% — L) — &3, where L is the branch

set. A 3-fold branched covering is said to be simple if its assigned homomorphism

maps each Wirtinger generater to a transposition.

IDepartment of Mathematics, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku,

Tokyo, 152-8550, Japan. E-mail: hatakenO@is.titech.ac.jp
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A diagram with transpositions is defined to be a diagram of the branch set of a
3-fold simple branched covering. Note that this diagram is unoriented. Each arc of
a diagram with transpositions is associated with a transposition (12), (23) or (31)
from its assigned homomorphism. The association is not arbitrary because of the
Wirtinger relations at crossings. The transpositions of an over-arc and two under-
arcs at a crossing are all the same or all distinct; see Figure 1. In the following

A XA
AKX

FI1GURE 1. Crossings of diagrams with transpositions. The trans-
positions (12), (23) and (31) are denoted by thin lines, thick lines

and gray lines, respectively.

Hilden [3] and Montesinos [4] showed that any closed oriented 3-manifold is
homeomorphic to a 3-fold simple branched covering of S® branched along a link.
Further Piergallini [5] showed that two 3-manifolds are homeomorphic iff their di-
agrams with transpositions are related by a finite sequence of the 3-move (Figure
2) and the covering moves (Figure 3), up to Reidemeister moves with transposi-
tions. Hence we can regard a diagram with transpositions as a presentation of a
3-manifold. We call it the covering presentation of 3-manifolds. Here we have a

question;

Make an invariant of 3-manifolds

formulated on their covering presentations.

For the answer of this question, we give a condition of a map which gives an invariant
in Section 2, and construct the Dijkgraaf-Witten invariant by giving such a map

concretly in Seciton 3.
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SO~

FIGURE 2. The 3-move

L L
all I / all
(23) / (23)
L L
L L
all I all
(23) (23)

L L
L L

all \ all
ey | AL \ (23)

r r

FIGURE 3. The covering moves. All the diagrams consist of a braid

joining two arbitrary diagrams with transpositions L and L’.
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3. INVARIATS

For a 3-manifold M, we can compute 71 (M) from its covering presentation.
Refer to [6] for more details. Using this idea, we define a coloring on a diagram
with transpositions which corresponds to a representation from (M) to a finite
group.

Definition 3.1. Let G be a finite group wtitten multiplicatively, D a diagram with
transpositions. A coloring on D in G is defined to be a map x : {arcs of D} — G,
satisfying the following conditions,
(i) at an all the same crossing, x(a) - x(b)~!-x(c) - x(b)~! = 1, where a and c are
the under-arcs and b is the over-arc, as shown in the left hand side in Figure
4.

(i) At an all distinct crossing, x(a) - x(b) - x(¢) = 1 € G, where a is the arc of
transposition (12), b is of (23) and c is of (31), as shown in the right hand
side in Figure 4. Note that we cannot change the order of the transpositions

in the equation.

x(a) =y \ x(b) =h x(a) = ‘CN x(b) =h
\X(c) =i \c(e) =1

gh—tih—t =1 ghi=1

FI1GURE 4. The conditions of colorings on diagrams with transpo-
sitions at an all the same crossing (left) and all distinct crossing

(right)

Proposition 3.2. The number of colorings on a diagran with transpositions in a

finite group is an invariant of the 3-manifold which is given by the diagram.

Sketch of the proof. Given a coloring on a diagram D in a finite group G, we can
obtain a representation 71 (M) — G, where M is the 3-manifold given by D. Using
this representation, we can verify that the number of colorings is preserved under
the Reidemeister moves with transpositions, the 3-move and the covering moves.
Note that in the covering moves IT and III, the colors on the arcs of L’ part will be

all changed in a rule. |
Proposition 3.3.

t{colors on D in G} = |G|* - {{representations 71 (M) — G}.
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By Proposition3.2, we construct state sum invariants of 3-manifolds formulated

on their covering presentations in the following way.

\
Let A be a set. If a map

X : {crossings of a colored diagram with transpositions} — A

is invariant under the Reidemeister moves, 3-move and covering moves, then

Y IIx() ez,

where the product is taken over all crossings and the sum is taken over all

the expression

possible colorings in G, is an invariant of 3-manifolds.

. v

4. DIJKGRAAF-WITTEN INVARIANT

We first review the Dijkgraaf-Witten invariant of [2, 7]. Let M be a closed
oriented 3-manifold with a triangulation 7" of N vertices. We give an order-
ing to the set of the vertices. A coloring on T in a finite group G is a map
w : {oriented edges of T} — G, satisfying the condition depicted in Figure 5, and
w(—F) = w(E)~! for any edge E, where —F is the edge with the opposite orienta-

tion.

gh

FIGURE 5. The condition of colorings on triangulations.

Amap 0 : GxGxG — A, where A is an abelian group written multiplicatively,

is said to be a 3-cocycle if it satisfies
0(1,z,y) = 0(z,1,y) = 0(z,y,1) = 0(z,2™ ", y) = O(z,y,y~") = 1,
9(y7 Z7w) : e(xy7 Z7w) : 9(.1:7 yz7w) ! 9(1:7 y7 Zw) ' 0(1:’ y? Z) = 17

for any x,y, z,w € G. Then the Dijkgraaf- Witten invariant is defined by

B =gx-Y I Weeza

w o; tetrahedron
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where the product is taken over all tetrahedron, the sum is taken over all possible

colorings, and
U3

w( Y2 =0(5,k,1),
Vo k

with vg < v1 < v9 < v3.
Now let us construct the Dijkgraaf-witten invariant on covering presentations.
First we introduce the coloring on the regions of a diagram uniquely given by a

coloring on the diagram.

Definition 4.1. Let x be a coloring on a diagram D in a finite group G. The
coloring on the regions given by x is an assignment of an triplet in G x G x G to

each region of R? \ D with the following rules:
(a) The unbounded region is assigned (1,1, 1).

(b) Two regions separated by an arc are assigned as depicted in Figure 6.
J k1 J, k.1 gy k1
h .

FIGURE 6. The condition of coloring on regions

We can verify that the definition is compatible around any crossing.
Then we define the weight of crossings of a colored diagram with the coloring on

regions associated with a 3-cocycle @ in the following equation;

h _ 1. _
\ ):9(979 1hah 1])9(hah 1gvk)

0(hg~ h,h g, g7 4) - O(h, g~ h, k" gk),

h _ _ L
\ )=0(g ", gh,h™ k) - 0(g~ ", 4,5 gh).

Theorem 4.2. This Xy satisfies the condition in the box in Section 3. Hence
>y II, Xo(7) defines an invariant of 3-manifolds.
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Proposition 4.3. Let D be a diagram with transpositions, M the 3-manifold given
by D. Then

ST o) = 1z - Zol0),

X
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A proof of the LMO conjecture

R [%{Z (Takahito Kuriya)
written by FHFT B4 (Yuki Tadokoro)

ABSTRACT. fFE o HE&EHEM Lie B G IO L T, AHAERY — 3 EKmo LMO
Ty ZPMO [ HBEER R AR PG 2\ T 5 L0 ) T (LMO P48, BGRT or
Le Q) IS L T—2 iM% 52 5., AR#HTlEa— REIMKT 75 7 R$E
D WS R ICOWTHOICIRET 5, ShiEY = A MY RAT A LTNS
BigENT 52T FRo () #5 - (T R) Wy iitd, ZonEN
FRDF—HKA VbR TND,

1. INTRODUCTION

/
Theorem 1.1. (LMO(Le, J. Murakami, Ohtsuki) conjecture, BGRT(1997) or

Le’s(?) theorem) G % HHASE Gl Lie #, g % G @ Lie algebra £ 4. Z®
L E,
TP (M) = |Hi(Mg; Z)| 7 W (ZMMO (M) |

eh=q

4Ell%, g: semi-simple Lie algebra.

TPC(M) = |Hi(M; Z)| 5+ Wo (Z"MO(M))|on—y, (M € QHS).

quantum G(g) invariant

Habiro-Le theorem

(M € ZHS)

S

path integral

perturbative G invarant

LMO invariant

e L CEAGL




g=slp ®& &, T.OhtsukilZ J 1 filik.

2. LIE ALGEBRA D1EH

/
Definition 2.1. g: finite dimensional Lie algebra /R or C &%, gA»*R(C) k£

DN NVZERT, AT OME %727 bilinear form[ , ]: g®@ g — g WEET
b2 &,

{[y,x] = ~fw.y]

(2,9l 2] =z [y, 2l = [y, [z, 2]

. J
N7 MVERVISHL, End(V) L [f,9](v) = foglv)—go f(v), (veV, f,ge

End(V)) LEDH D Z &IT LD, Lie algebra & 722 ¥ 4. Lie algebra ORI &1L, g

726 End(V) N Lie algebra & L T DOH#ERFTY

p: g — End(V)
Thd. 2%V, pld, WEEHgee—End(V) THY, [, ]%
p([z,y]) = p(@)p(y) — p(y)p(z) = [p(x), p(y)], (2,y € g)
D& D IR,

Example 2.2. (FEf{3RIR)
FESNirecglIHLT,

ad(z): g 3y — [z,y] € End(g)
I% Lie algebra dFREH.

AR, g% C EoXRY MVERE T 5, g WARIKITTHR DT, ding=n £ E AN
3, FRtobiftRA%Z ad: g — End(g) = gl(n,C) & AT Z &M TE 5.

4 N
Definition 2.3. (Cartan-Killing form)

symmetric bilinear form
Bg:gx g3 (z,y) — Tr(ad(z)ad(y)) € C

W g DEJEDOHY FICKO6TEESD. By(z,y) & (z,y) £5LT.
. %

Remark 2.4. g: semi-simple Lie algebra = By : non-degenerate.
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semi-simple Lie algebra g IZ% L T, Cartan subalgebra h C g M EF & BRVT—
EWNCEE L. acbh* =Home(g,C) IZxL T,

go ={z € g; [hz] = a(h)z (hebh)}

5= (D)

acd
% root decomposition & FETY, ® % root &S, A € hITHL T,

0 (yeh)

ad(\)(y) = [\, y] =
M) = [\ y] {(Aﬂ)y (v € o)

1
MR Y 2D, positive root D = {a >0} ITHL T, p= 3 Z atT5,

a>0

Remark 2.5. a € P I2L 6T, dimg, W—ETH 5.

Example 2.6.

b
512<C:{A: < “ d);a,b,c,dec, Tr(A):a+d:0}:(CH@(CE@CF

c

kb, L,

TV, h=CH %5,

gICBAL T, T™(g) = g®™ &ED, 7>V IVREE

P10
m=0

%, 122, TOg) =C & 5. g0ieh &4 IEaHRSHRIS & o TR,
gOT VI MME, X@Y Y@ X - [X,Y], (XY €g) CERSND AT TV
TH| 5 -8R
Ug) = PT™)/XOY - Y0 X - [X,Y]
m=0

% univesal enveloping algebra & M5,

Remark 2.7. (&)
A: associative alegebra %, [z,y] = xy —yx, (z,y € A) EEFKEL T, Lie algebara
& RIT. ATED Lie algebra & L COUERAY f: g — AIZH LT, LAFTOXAXZ A
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We T HUERA g: U(g) — A MRRZBROC—EIICHEET 5. 1271, g— U(g)

PSR AVASE: RO PV
f
A

U(g)

g A

3. CHORD DIAGRAM

FIGURE 7. Chord diagram O3

/
Definition 3.1. Chord diagram % FHEICE>, Q Lo~ MNVER %
ASTHX,STU @ 3 D ® relation TH| - 7= 28] %
A(S") = spany {C D} /AS,THX,STU
EED D,
- J
Beb SUITAMTEL, vertexe [ZEBT L L H 5.

_ fvertices

Remark 3.2. deg(D) 5

BAD.

Ehx T 5, ASY) ARG b V2SR v

Remark 3.3. STU relation | p=ad & §5 &, THX I/ 5.

Definition 3.4.
A(¢) = spang{3-valent graphs}/AS, THX.

B = spang{1, 3-valent graphs}/AS, IHX.
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[y, 2] 2, 4]

[ya x] = _[-'I/',y]
FIGURE 8. AS

@ e ®
.
Yy z x Yy z x
o o
@ = 5] -

[[xay]v Z] = [Ia [ya Z]] - [ya [l‘, ZH
Ficure 9. ITHX
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FIGUre 10. STU

FIGURE 11. 3-valent graph, 1, 3-valent graph O

105



FIGURE 12. x: B — A(S!) O

The symmetrization map

6 DEDIEDD.

D,D' ¢ BITHL T,
D=0p:B>D' — Y (D, D'hktrbtd)eB

DD, “BOERIL, legsof D=m,legsof D' =n &§25&, Py =], (n—
E+1)EBYH5.

Example 3.6.
T T
toRloneLiolRe]
2 Ty =z
—at = 1222 X,
dz?

Definition 3.7. D,D’ € BICK L T, {RAVEFRTE 5.
OpD’  (#legs of D =1 legs of D’),

0 (otherwise).

<DaD/>{
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tmax

te,

ta

tc,

t1

W

FIGURE 13. K & Dp

tc; ¥ critical point.

Remark 3.8. (D, D) 1Z 0pD’|z=0 T2 D,

4. KONTSEVICH INTEGRAL

/
Definition 4.1. Morse knot K CR3 =R, x C, DAL R L L T,

o0 m /
_ 1 I dz; — dz/
2(K) = — / >, (pDp A ———
= O(2m) — R
= . i pairings =
e eritieal ™ P={(z12)}
WEE D
o
Remark 4.2.
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K |P=1

FIGURE 14. Dp:

tmax |
to, | W
Dp S Dp:
te, €
tmin__
I I I I
tmin  tCu te, tmax

FIGURE 15. &5 %

N

VITARZRIT A 67000,

1-term relation



% chord diagram IZ A 5.

NS AIRVASIONCH

/
Definition 4.3. (Kontsevich integral)

Morse knot K C R? = R; x C, /¥ critical point % c(K) flifi> & &,

c(K)

Z(K)=Z(K)v 2z € A(S")/1-term

MWEES.
-

Chord diagram

@
(DO~ D

Y LT A(SY) Il E AND.

eB<.

exp IZ2W T

-

Definition 4.4. (The integer framed version of Kontsevich integral)

K % integer framed knot, with framing f & 95 & &,
Z(K) = Z(K)exp (g@)

MWEES.

.

Remark 4.5.

f f i
eXp(EG) Q+§+§<§) Jr"'.
109



Example 4.6.

UL

0<t<1 &b tiH LT,

z = exp(wit), 2’ = exp(mwit + i)

tBle,
dz = miexp(wit)dt, dz' = miexp(mwit + wi)dt

NI RRVASH

7
— m8)"dty A - Adtm }mzli
(2mi)™ O<t1<---<tm<1( )

(5 [ i) (H)"OX)
==(FN"CX)

LT, FEMNEASL. O

Z(K) =vZ(K) € A(SY)

% Knot invariant 1272 5. v 13 Kirby move TARZEIZ/L 5.
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5. LMO INVARIANT

G #BHEEM LieBf e L, g %% ® Lie algebra & 9 5. V) %, dominant integral
weight A 12 & - T prametrize 417z, g @ finite dimensional irreducible represen-
tation &4 4. BIlHE%,

Dy -Dy=D;UDy

CEAL T, RihEEZ ANS. ¥/, the formal PBW linear isomorphism %
oc=x"1 AS'") - B

&9 5. TR D integer framed knot K, with framing f ICKf L C, % % trivalent
graph Y € B (f 3-valent> 1) WWFLEL T,

0 Z(K) = exp (gf\) Yy

Linb.
4 N

Definition 5.1. (The formal Gaussian integral of the Kontsevich integral)
FG o 1
| ozt = (o (-5 7).

Definition 5.2. (LMO invariant) K % framing f @ framed knot & 95%. My
% K 12¥h - C surgery L T8 5 #1% rational homology 3-sphere &9 % & ¥,

/ " o Z(K)

[T

-

ZLMO (MK) _

Remark 5.3. #icld,

(1+a)t=1-a+a*-a*+ -

TREHRTD.



- ~
Theorem 5.4. (T. T. Q. Le) K % framing f @ framed knot & L, Mg % K

120 - T surgery L T15 5 15 rational homology 3-sphere & 4%, framing 0
DK EFEU knot & Ko & BL. 2oL, 7PE( M) 13k THELN5.

L s sign(£)(p.) (2 ElRy
g~ [T(—q ) > cg.25.n(25— 1! — R,

Wi
a>0 BEY,nEL%(
2|04 |<2j<n+2|Dy|

Ly (QulK) o)A =9) = £ scvncny  Cogn@ 0B, B0 =
2\‘1’+\S2j§nii-2\¢’+\

(B, THY, W[ L Weyl BEW Of%L, p= 3 Yaso THD.

- J

\

Lemma 5.5.

ZLMOQWK)«L(DexP<§ﬂ§%£L_lﬁ)>i/FG(Q—ng(Kboempu<£/”\>.

. J

Semi simple Lie algebra g 2% L C, symmetric algebra S(g) %
Se)=EP1e)/XeY -YaX
m=0

LED, S(g)? & gFHTARZEZ, S(g) &k& 9 5. The universal weight system |3
Wy: B — S(g)°[[]]
EEOBH{THDL., ZoLE,
Wyooo02(K): ASY) — B — S(g)°[[h]]

L7220, NehITH LT, Jyv, (K) 1 knot OETRERT,
Jgvi(K) =Wy o000 2(K)(\) x dim Vy
WAL 5. F72,
Qu(K)N) = Jows (K) x o, (O)

ETEDD.
r:odd prime & L7z & &,



b,
B@f[}w%ﬂ

Wam =

——

2m

CED D, F72, the modified Bernoulli numbers ba,, % LAT OXEHRFRER CES
T 5,

> 1 sinh(z/2)
2m g SEZ) )
5 e = o 2552

ZOLE,
Q = exp, Z bamwom € B
MWEES.
- ) I
Theorem 5.6. (S. Garoufalidis) p = 3 Yasgx & LtEE,
. H sinh Mh
We((2, ) = || ——5—
a>0 (p5 Oé) h
2
ANDAYA
- J
9 =
B,

Lemma 5.7.
Wy (0) = 24(p, p)
MEKAZ. 72721, (, )& Cartan killing form T 2.

W,(0) % 2 fEfE O kT ET 5.
% @ 1(Lie algebra & OXGAIHART 1Y)

113




g®g X®Y
gog | ST L

| 1 7
C 1
g [X,Y]

Al 1

g9 XY

72721, {lI,}: orthonormal basis with respect to ( , ).

0 ZLATOXD L HICHRT,

Y Lo (L)

f

ZI]-@L-@ L, 1]

NLeLolol,

}
Lo
.......................................................... fmmmmmmm“

1

-7,
Wo(0) = > (1, 11, [T, 1))
= (I;,ad(I;)ad(L)I))
— Zad(li)ad(li) x dim g
=Coadimg  (CaglFH ¥ I —I37)

= 24(p, p).
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® 2(Lemma 5.7 OFER)

[Iivlj] [Ijall]
> I I;
I; I;

> (s 1) (1, L)) % (I, 1) % (1, 1)

2%

([z.9],2) = (2, [y, 2])

WO SIDODC, (I, 1) = 6ij = Op,a; ZFVD &, 24(p,p) &Y (1, 1), 1, Ti]) %
i

Iy, 1;) x (L, I;) " —#T 5. O

Theoerem 1.1 DFEHH
| Hi(M; Z)| 75+ W (Z8MO (M), %35 L T, Theorem 5.4 0701 —#T
NIER Y, Lemma 5.5 £ 1),

Wg (ZLMO(MK))

=T, (<Q, Q>) exp <%Wg(9)) x W, (/FG (Q*laz(m)) exp, <§F\>)
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L5, #0471, Theorem 5.6 £ Lemma 5.7 I2& Y, e =q, |p|*> = (p,p)

B,

. (p,a)
oy SR hexp<h3sign(f)f

= fa)h 18 24(p, P))
2

a>0

sinh (p,2a)h .
:OEIO @h (6 )

3si —
mgn(2f) f ‘P‘Q

sign(f)—f | 12 ; 1 sign(f) Fe
- ol _ gsien(f)(p,a) _
- q 2 Ha (1 q ) X < <>
>0 [Toso(p: @) h

Thb.

—73, LIS oEB s, RO K IICEHE SN,

4 N
Theorem 5.8. (S. Garoufalidis) AT ORI A TH 5.

Q
B B

W o |m
S(g)°[[]] —— S(e)°[[Al]-

pG?)

2751, D(jg) V& Duflo AAITH 5.
\_ J

p € S(@)?[h]], A€ hiTXHL T, p(N) & evaluate T,

D(jE)p(N) = p(r + p)



TBEAT.
Z @ Theorem # {5 &,

W, (/FG (@ o2(k0)) exp. (gr\»

T
oo (2)) (autk
:eXp( 282)( aa>0 (p

i(k0)) )

(A~ p))

QZcﬁmhn )z

>O
:(ffh)ﬁdnw ZCB 2jn<W)j(2j _ 1)!!h”7j
14 - f
b,
(A a)
dimVy_, = , (A a) =alA

A—p O:!;](:) (p7a) (( ) ( ))
bt

Wy(D) = Wy(D) x ies(?)
IR

% 0,0k
Hy(My;Z) = fsign(f)

ZEDbENIRY. O

V]

/

Definition 5.9. (The Dedekind symbol)
PeQiLT, Quiito s(g) DUV TS B,

S(—z) =
Sx+1) =

o(2)+(3) -

1
4 + — — 3sign(pq).
q P Pq

Z D& X, Lens space L, O perturbative invariant 23515 T 5.
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Corollary 5.10.

S(%) (p,c0) (pax)

PG o |p|2 H q 22 — (@ 2a
T (Lavb) =4q 2 sign(a)(p,o) —sign(a)(p,a) *
a>04 2 —q 2




Braid indices of surface-knots
and colorings by quandles

Kokoro Tanaka'

ABSTRACT. The braid index of a surface-knot F' is the minimum number
among the degrees of all surface braids whose closures are ambient isotopic
to F. We give a lower bound of the braid index of a surface-knot using the
colorings by a quandle. As an application, we determine the braid indices
of S2-knots for infinitely many examples and give an infinite series of ribbon
surface-knots of genus g whose braid indices are s + 2 for each pair of integers

g>0ands>1.

1. SURFACE BRAIDS

Please refer to S. Kamada’s book [6] for details of surface braid theory.

Definition 1.1. (surface braid)

Let D? and D3 be 2-disks and X, a fixed set of m distinct interior points of D?.
Let pr; : D? x D3 — D? be the projection map to the i-th factor for each i (i = 1, 2).
A surface braid of degree m (or surface m-braid) is a compact oriented surface S

embedded properly and locally flatly in D7 x D32 such that

(i) the restriction map pra|s : S — D% is a branched covering map of degree
m7
(ii) 8S = X,,, x D3 (C D? x 9D3), and
(iii) the branched covering pra|s is simple, that is, |S N pry(y)| = m —1 or m

for each y € D3.

Definition 1.2. (equivalence relation)
Two surface braids S and S’ are said to be equivalent if there is an ambient isotopy
{ht}tefo,1] such that
(i) ho =id, h(S) =5,
(ii) for each t € [0, 1], h; is fiber-preserving, that is, there is a homeomorphism
b, : D3 — D2 such that pro o hy = hy, o pra, and
(iii) for each t € [0,1], ht|p2xopz = id.

Definition 1.3. (closure)
Let S? be a 2-sphere obtained from D? attaching a 2-disk D_g along the boundary

lGraduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba Meguro, Tokyo

153-8914, Japan. e-mail: k-tanaka@ms.u-tokyo.ac.jp
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of D3. A surface braid S of degree m is extended to a closed surface S in D% x S?
(: D? x (D3 U D_g)) such that

SN(D?xD3) =S and SN (D? x D2) = X,, x D2 .

Identifying D? x S? with the tubular neighborhood of a standard 2-sphere in R*, we
assume that S is a closed oriented surface embedded in R%. We call it the closure
of S in R%.

Theorem 1.4. ([4, 10]) Any oriented surface-link in R* is ambient isotopic to the

closure of a surface braid of degree m for some m.

Definition 1.5. The braid index of a surface-link F, denoted by Braid(F), is
the minimum number among the degrees of all surface braids whose closures are

ambient isotopic to F'.

Remark 1.6. (Known results about braid indices)

e The braid index of the trivial n-component S?-link is n (n > 1).

Braid(F) = 1 <= F: the trivial S%-knot.

Braid(F) = 2

<= F: the trivial 2-component S?-knot or the trivial ¥ -knot (g > 1).
Braid(F') = 3 = F: a ribbon surface-link. (it was shown that the other
way does not hold.) ([5])

There are infinitely many ribbon S2-knots with braid index 3 ([5]).

e There are infinitely many ribbon S?-knots with braid index 4 ([7]).

2. QUANDLES AND COLORINGS

Definition 2.1. (quandle)

A quandle [1, 2] is a set X equipped with a binary operation (a,b) — a % b such
that (i) a *a = a for any a € X, (ii) the map *a : X — X (z — x % a) is bijective
for each a € X, and (iii) (a*b)*c= (axc)* (bxc), for any a,b,c € X. A function
f:+ X — Y between quandles is a homomorphism if f(a *xb) = f(a) * f(b) for any
a,b € X. For each element a € X, the map *a : X — X is a quandle automorphism

of X by (ii) and (iii), and we denote the inverse map (xa)~! by *a.

Definition 2.2. (knot quandle and coloring)
For n > 0, let M be an oriented (n + 2)-dimensional manifold and L an oriented n-
dimensional manifold embedded in M properly and locally flatly. Let N (L) denote

a tubular neighborhood of L in M. Take a fixed point z € E(L) = CI(M\N(L))
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and let Q(M, L, z) be the set of homotopy classes of paths « : [0,1] — E(L) such
that a(0) € OE(L) and «(1) = z. A point p € JE(L) lies on a unique meridional
circle of N(L). Let m, be the loop based at p which goes along this meridional
circle in a positive direction. The knot quandle of L in M, with the base point z,

is a quandle consisting of the set Q(M, L, z) with a binary operation defined by

[o]  [B) = o+ 57" - mig(0) - B -

When M = R"*2 we denote Q(R"*2 L, 2) by Q(L) briefly.

Let F be a surface-link and X a finite quandle. A coloring of F' by X is a quandle
homomorphism ¢ : Q(F) — X from the knot quandle Q(F) to X. We denote by
Colx (F) the set of all colorings of F' by X. Note that the number of the colorings,

|Colx (F')|, is an invariant of the surface-link F'.

3. MAIN RESULTS

Theorem 3.1. Let F be a surface-link which is not a trivial S2-link. Let X
be a finite quandle of order N, where N is a positive integer. If the inequality

|Colx (F)| > N! holds for some positive integer [, then we have Braid(F) > [ + 2.

By using this theorem and Theorem 4.1, we determine the braid indices of S2-

knots for infinitely many examples.

Theorem 3.2. For an odd integer n > 3, let K,, be the S?-knot obtained from an

(n, 2)-torus knot by Artin’s spinning construction. Then we have the following.

(i) The braid index of an S%-knot K, (s) is s+2, where K, (s) is the connected
sum of s copies of K.
(#4) The braid index of a Xg-knot K, (s, g) is also s + 2, where K, (s, g) is the

connected sum of K, (s) and g copies of a trivial T2-knot.

Theorem 3.3. For each pair of integers g > 0 and s > 1, there exists an infinite

series of ribbon surface-knots of genus g whose braid indices are s + 2.

4. LEMMA, PROPOSITION AND THEOREM

Theorem 4.1. ([7]) If neither Fy nor F; is a trivial S?-knot, then the following
inequality holds.

Braid(Fy#F) < Braid(F}) + Braid(Fz) — 2

Proposition 4.2. Let F be a surface-link which is not a trivial S2-link. Let o
be the minimum number of generators of the knot quandle Q(F'). Then we have

Braid(F) — 1> a.
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Let R,, be a quandle consisting of the set {0,1,---,m — 1} with the binary

operation defined by i * j = 25 — i (mod m), where m is a positive integer. The

quandle R,, is called the dihedral quandle of order m.

Lemma 4.3.

Colg,, (Kn(s)) ‘ <mstl,

The equality sign holds if and only if n is divided by m.
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Surface braid monodromies on a punctured disk

Isao Hasegawa

ABSTRACT. We study surface braid monodromies on a punctured disk by using
a monodromy system. It is shown that any monodromy system of a surface
braid of degree 3 is ribbon. Here we show that there is a non-ribbon mon-

odromy system.

1. MONODROMIES ON A PUNCTURED DISK

Let D? be a 2-disk and ¥ be a set of n interior points in D?. Fix a base point

y € 0D2. For a group G, a G-monodromy p is a homomorphism
pim(DA\S,y) - G.

Two G-monodromies p and p’ are equivalent, denoted by p ~ p’, if there exist a
homeomorphism A : (D?,3,y) — (D?,%,y) and an inner automorphism o : G — G

such that

p =aopoh,.
We often want to classify G-monodromies with some additional conditions under
the equivalence ~. For example, Lefschetz fibrations on a sphere with G: the

mapping class group on a closed surface. ([2]) or algebraic curves in a projective

plane with G: the m-th braid group. ([3]).

To study monodromies easily or systematically, we use a Hurwitz generating system

H = (n1,m2,...,mn) of m1(D?\X,y) which satisfies the following conditions:

e cach 7; surrounds one puncture in a positive direction (see the following
figure); and
R TRE RRREE N, = [0D?].

D>

FIGURE 1
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A G-monodromy system is an n-tuple

MS(p, H) := (p(m), p(n2); - -, p(1n)) € G x - x G.

A Hurwitz equivalence is a equivalence relation on G X - - - X G corresponding to the

equivalence of monodromies, which is generated by the following relations:

Erre & &t 6n) ~ (€ G § G5 6n),
(Elﬂ v agn) ~ (ﬁ_lglﬁa v 75_16715)7

where j = 1,2,...,n—1 and 8 € G. If monodromy systems MS and MS’ are
Hurwitz equivalent, we denote it by MS & MS'.

Theorem 1.1. Let p and p’ be G-monodromies and H and H’ are Hurwitz generating

systems. Then
e p~ p if and only if MS(p, H) R MS(p’, H),
o (£1....,&) = MS(p, H') if and only if (&1,...,&,) % MS(p, H).

2. THE SURFACE BRAID MONODROMY

Let D? x D2 be a 4-disk and X, be a set of m-interior points in D?. A simple
surface braid of degree m is an oriented compact surface S embedded properly and

locally flatly in D? x D3 which satisfies the following conditions:

e the restriction map pry|s : S — D3 is an m-fold branched covering map,
e 9S =X, x D3, and
e t(SNpryt(y)) >m—1 for any y € D3.

We denote a set of branch points in D3 by %(S). By the condition about 95, the

number n of elements of ¥(S) must be even. For each y € D3\%(S5),
pri(Snpry’(y) € nt(DY)

is a set of distinct m-points in the interior of D?. Thus we get a homomorphism
ps : 1 (D3\S(5),y0) — Bum,

called a surface braid monodromy of S, where B, is the m-th braid group given as
the following way : for each closed curve y in D3\X(S), we define the closed curve

7 in the configuration space of unordered m-interior points of D?

J(t) = pry(SNpryt (v(1))).
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The fundamental group of this configuration space is isomorphic to B,,. Now we

consider monodromy system MS(ps, H) = (ps(m1), ps(n2),- -, ps(1n)) € Bm X+« -X
B,,. We say that MS(pg, H) is ribbon if it is equivalent to a system (&1,...,&)

such that £»;_1&2; = idp, for each j = 1,2,... We say that a surface braid

n
’? 2"
is ribbon if its monodromy system is ribbon. Here note that if a surface link has
a closed surface braid presentation whose braid is ribbon, then the link is ribbon.
However it is not known whether the other way holds or not. We have the following

on the ribbonness of a monodromy system.

Theorem 2.1 ([1]). Any monodromy system of a surface braid of degree 3 is ribbon.

Now let ¢ be a map from B, to (Z32)™ x S, given as follows and let 7 be the

projection map from (Z2)™ % S, to Sy, , where S,, is the m-th symmetric group.
I 4 I I 4
p(oi) = =
' 0
In—i1 I Im—i1

Observing surface braid monodromies by using homomorphism s = 7 - ¢, we obtain
the following theorem. As a corollary of the theorem, we can show that there is a

non-ribbon monodromy system.

Theorem 2.2. Let MS(ps, H) = (b1, -+ ,by) and MS(ps+, H') = (b}, - ,b,) be rib-
bon monodromy systems. If (s(by), -, s(b,)) is Hurwitz equivalent to (s(b}), - -, s(b,)),
then (¢(b1),- -+, (b)) is Hurwitz equivalent to (p(b)), -+, w(b))).

Corollary 2.3. If p = 2 and ¢ = 2 (mod4), then a monodromy system (b1, ba, . . ., bg)
is non-ribbon.

by = 232, by = 174923244917

by = 323, bg = 17473234917

by = 173231P, by = 4732344

by = 1723217, by = 4723244
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Delta-unknotting numbers and
the Conway polynomials of knots
Takashi Makino (%8 % = K72 KFFe B AR AHISER

Preface

knot @ Conway ZIHAIL, EHIEN 1 THRER O AHBEOFHE LD LD
B 5. F77, BHEEN 1 CEBURD RHEBOEE b HOZHERICO>WT, &
% Conway ZIHA L L T¥Y D unknotting number 1 @ knot OFERIT L < HIH N
TWb, E51Z, 2 IROFH % A-unknotting number & 9% knot OFERLAS Hitoshi
Murakami 1 & ¥ “Delta-unknotting number and the Conway polynomial” (Kobe
J. Math. 10 (1993), 17-22) T, X 6N Tnb. 29 LEROERE L, &5
HS 1 T2 ROMBMWIETTNTNELD L9 % n AOZEAUIKHL T, Thb
% Conway ZIHR. & L, unknotting number A% 1 T A-unknotting number 2% 2 ¥X
DIFBUC—HL, EBIT, N6 D knot DO BEDFEED 2 21221 T D A-Gordian
distance 2 2 IROBFPDF= L T2 5 & D 7%, n fHD knot DK E 52 5.

1. PRELIMINARY

Theorem 1.1 ([3, Louis H. Kauffman]). p components @ link L 12DV T, {RD 2
Gl % 1=

(1) p—2>m ZH=T mIiZONT, an(L)=0 THD.
(2) p LEFERCLTE mIIONT, an(L)=0 TH 5.

FFIZ, L ¥ knot D& 1, ap(L) =1 TH 5.

Definition 1.2 ([7, H. Murakami and Y. Nakanishi]). R T/r& 5 knot diagram
@ local move % A-unknotting operation &> .

- -
-----------

~
-------------

Theorem 1.3 ([7]). fEE® knot 1%, AFRIAIO A-unknotting operation ZfEd Z &
124 - T trivial knot 12725.
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Corollary 1.4. {F5® 2 D® knots K, K' I22WT, K 1%, ABREID A-unknotting
operation #fE 9 Z £ I1Ck->TC, K' 1Tk 5.

Definition 1.5. knot K @ A-unknotting number & %, K % trivial knot 12§ 5
DIZRE 7 A-unknotting operation DER/NDOERZ VD . ZhE v (K) &£ T

Definition 1.6. knot K 7»5 knot K’ ~® A-Gordian distance &1, K # K’ |Z
T2 DICLEZ A-unknotting operation OF/NDEHIZ VD . ZhE d5(K,K') &
=9

Theorem 1.7 ([9, M. Okada]). 2 2@ knot K, K’ % d5(K,K') =1 £7%% &5 7%

boedoeE,
|az(K) — az(K')| = 1.

Corollary 1.8 ([9]). fE&E® 2 DD knot K & K' 1L T, d5(K, K') —|ax(K) —
az(K')| \33FA DB TH 5.
L7228 T uB(K) — |ax(K)| b £7-IFEDBHTH 2.
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2. CONSTRUCTION OF KNOT FOR THE CONWAY POLYNOMIAL

Theorem 1.1 XY, knot K & Conway ZIHIIE

1+ a2 +agz* +- - +a92®™ (meN,a; € Z)

TRINDD, D LD ITRENIEBOZHAIIKH L T, TDZHA % Conway
ZIEA L L TH D &9 7% knot WEET D2 LAVRINT 5.

Theorem 2.1 ([6, H. Murakami]). fEEDOZIERA

f(2) =14 b122 4+ bzt + -+ 5,22 (ne€ N,b; € Z) ICHLT, by #0 DX,
uA(K) = |by| 2D Vi (2) = f(z) £725 K 7%, b =0 & &%, ud(K) =2 D
Vk(z)=f(z) £75 K DEHET 5.

ZOFMICH 20, LLFD &k 9 7% knot #EZ T 5.

t— full twists

s K4 (ty,ta,ts, - tn)

n—1
Vi (bt tn) = L2 D (ti +1)(=2%)" £ tp(—2%)"
=1
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3. MAIN THEOREM

ATFD L&D 7% knot &R 5.

6&)1?

" tm3

'\\

/[
( :
\

e
%}\/\

* Linnn \:

t(m-l)

Tim-1
-

\J

S
>
2

/[
( :
\

(&

J

\_/ — I ~—
“his * b )

\ 7 * J_J)

t— full twists
Z ® knot %

Kﬂ:(tola (t127ﬁ131 e at1n1)7 (ﬁ227ﬁ23) e at2n2)7 Tt (ﬁmQ) t’m37 e 7ﬁmnm))

eRITZLITTS.
Z @ knot @ Conway ZIANZ1ET 5 &,

vKi(tm-,(tlz-,tlaw“7t1n1)-,(t227t23-,"' t2ng ) (Em2,tma, tmngy, )
m nj—1 )
=1F(tor +m)2?£ 30 | X (i + 1)(=2)" + tjn, (—27)"

j=1 \ i=2
b,
Z DFERM S, IRD LD 7 Theorem MEIH &N 5.
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Theorem 3.1. {FE D m {HOZIHN
Vi(2) =1+ 2% + spo2t 4+ + 515,220,
Va(2) = 14222 + 8902t + - + 597,222,

Vi(z) = 1+jz2+sj224+,.._,_Sjljzmj,

Vi (2) =14+ mz? + spozt 4+ + sy, 22 (s,€Z)
WL CIRD 3 Sefb % 2272 knots K1, Ko, -+, K,y DMFEAET 5.

Proof. | := max{ly,la, -+ ,In} &L,

1<7j<m IC2 T,

sik =0 (I; <k<l)

&9 5.

COLE UTD 2502727 K1, K, -+, Ky Wl & 725

(a) K1 =K_(0,((=1)s12 — 1, (=1)%s13 — 1, -+, (=1)" 25141y — 1, (=1)""Ls11)).
(0) Kj =K_(0,(x1), (x2), -+, ;)
=K1 = K_(0,(x1), (x2), -, (%)),
((sj2 = s(j+1)2) — 1, —(853 = s(j+1y3) — 1,

(=D (s50-1) — sgne-1) — L (=D (s — s¢+1)))-

FIZEDRER KD,
tor =1, tia = (—1)s12 — 1, t13 = (—1)%s13 — 1,
o tigey = (D) Ps0on) — 1ty = (-1) sy
h>1 1220\,
tirnz = (—1)2(sn2 — S(h1)2) — Ly tnpnya = (—1)3(8n3 — Sz — 1), -+

thrna—1) = (D" (spa—1) = stanya—1)) — L, tary = (1) (sh — sgay) &8
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-1
1=2

= 1+ 2242+ +s2%
(s, =0 (L <k<l) £DV,)

1+Z2+S1224+...+811122l

VKJ-(Z) =1 +j2’2 +Sj224 +"'+Sjlj2’2lj THdHERET .

Vi (2) = 1+t + (5 +1))2°
J+1 /11 _
By (Zm R tm—z?v)
h=1 1=2
J -1 .
= 1+ (to1 +4)z Z( (thi +1)(—2 )Z+thz(—z2)l>
h=1 \i1=2
-1 )
+2° - <Z(t(g‘+1)i +1)(=2%)" + t(j+1)l(z2)l>
1=2
-1 )
= VK]. (Z) + 22 — Z(t(]"’_l)l =+ 1)(*22)1 — t(j_,_l)l(sz)l
1=2
— 1+j22+8j224+"'+3jlj22lj
-1
+27 = (=) (555 — s(g4ni) — 1) + 1)(=2%)
1=2

—(=1)"(st = s (=)'
(55 =0 (I <k<l) &F2HOT,)

= 1+j22+8j22:4+...+8jlz2l
-1
+27 - Z(_l)z(sﬁ - S(jﬂ)i)(—ZQ)Z
=2

—(=1)(s51 — 5(j+1)z)(*22)l
= 1+ (] + 1)2’2 + S(j+1)2z4 4+ 5(j+1)lz2l
(s =0 (p1 <k<l) &0,)

= 1+ (.] + 1)22 + S(j+1)22;4 + .o+ 8(j+1)lj+lz2lj+l.
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Lin1)

oo 0 ﬂ -
7z
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Fin1)3
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=
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A-unknotting operation
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fn-1)2 Bn1)3 1)
: - ): J/) e e @ ﬂ =
\_/ N— 7

. . o )

|| te s , ﬂ
( ; .\ 1.\ ;d e e o /. )

tn =0 DEXEEZTHDLDT, K; ICZ OEELZEVIRL THTIE, #/H A-
unknotting operation % j [B[{T5 Z & C, trivial knot 1272 5.
F- T,

F 7z, Corollary 1.8 £V, u®(K;) —az(K;) T7bbH v (K;) — j 1 FIFEDOBET
5. Lo,

EBIT, dg(K;, Ky) < |j —j'| efRET 2 L,

j<j &L,

ut(K;) +dg(K;, Kj) <j+1j—j'1=7"

2, uB(K;) +d5 (K, Kj)>u?(Ky) = §' ThbH 2 LICF)E.
¥ 72, knot DRERR D16 d5 (K, Kj)<j' —j =17 — 7|
j>7 DCEFLEEKRTH D.

W Z1Z,

dg(K;, Kjr) = [j—j'|.
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WIS, AR D & D 7% knot & A 5.

S - )
ARy ARy, L L
P ° ° °

AP f l13 Wf'tlm )
C..A S S 7 M
Ih%
K% (tor, (t12, t13, - 5 tiny )y (f22, 1235+ s toms )y -+ s (tmas tmzy = >t )
LRTILICT S,

S 61T, LATD knot &2 P* LRI Z&I2T 5.

[--I
. ~
-~
¢ .

’ A
.
*
N L N
top ol
. L]
. ’
4

Ki(tolv(t127t137" : 7t1’n1);' o ,(th,tmg," : ;tmnm)> @é“r‘ﬁﬁ\%u?@: tﬁ\z/)ﬁ)
5.
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Corollary 3.2. Vp«(2) =1 2613,

VK:}E(toh(tm,tw,‘“ ting ),(t22,t23, stang )y, (Em2stms, stmngy, )

m nj—1 )
= 1F (o +m)22E Y- [0 (15 + 1)(=22)1 + g, (—22)™
j=1 =2

Tibb,

VKi(tm,(tm,tlsw“ ting )s(t22,t23, stang )y, (tm2,tm3,  tmngy, )

= VK:E (to1,(t12,t13, s t1ng )s(t22,823,  stany )y s (Em2,tma, tmng, )
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Delta link-homotopy on spatial graphs
Ryo Nikkuni?

ABSTRACT. Delta link-homotopy is an equivalence relation on oriented links
generated by delta moves on the same component and ambient isotopies, and
extended to spatial graphs naturally. In this talk, we will explain the content
of the papers [18, 19, 20]. We also refer the reader to [22, 23, 24] for their
outlines in Japanese.
In this note we will discuss about

e the relation between delta link-homotopy and the other equivalence re-

lations and
e (complete) classifications of spatial embeddings of certain graphs up to

delta link-homotopy.
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This lecture note is based on the notes made by Kazuhiro Ichihara. All of the
figures in this note were illustrated by Reiko Shinjo. The author wishes to express
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0. EQUIVALENCE RELATIONS ON SPATIAL GRAPHS

Throughout this talk, we only consider a finite graph without free vertices (i.e.,
vertices with valency 0, 1). We always regard a graph G as a 1-dimensional CW- or
simplicial complex as usual. We call an embedding f : G — S® a spatial embedding

of G, or simply, a spatial graph.

Example 0.1. Throughout the following, all vertices and edges of graphs will be

assumed to be labeled with numbers.

In this section we recall basic definitions, which will be used throughout the talk.

First we give a summary of known equivalence relations for spatial graphs.

Definition 0.2 (equivalence relations, [32]). Let f, g be spatial embeddings of a
graph G.

(1) f and g are ambient isotopic if there exists an orientation preserving home-

omorphism ® : $3 — S3 such that f o ® = g holds.

1Depaurtment of Mathematics, School of Education, Waseda University, Nishi-Waseda 1-6-1,
Shinjuku-ku, Tokyo, 169-8050, Japan. E-mail: nick@kurenai.waseda.jp. Date: 2004/2/2 13:30—

17:30
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free vertex
e isolated vertex

Fig. 0.1

It is known by [6, 35] that this is equivalent to that f and g are trans-
formed into each other by the Reidemeister moves; that are (I), (II), (III)
(original) Reidemeister moves for knots, and (IV), (V), see Fig. 0.2.

0 0= N\ =0,
" Q—)C—Q
() Q /ﬁ@

(V) XXy ey X

ok

Fig. 0.2. Reidemeister moves
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This is also equivalent to that there exists a level preserving locally flat
embedding ® : G x I — S x I between f and g. Here ® : G x I — S3 x I
is said to be
(a) between f and g if there is a real number ¢ > 0 such that ®(z,t) =
(f(x),t) for any z € G, 0 < t < ¢ and ®(z,t) = (g9(x),t) for any z € G,
l—e<t<l,

(b) locally flat if every point p € ®(G x I) has a neighborhood N such
that (N, NN®(G x I)) is pairwise homeomorphic to the standard disk pair
(D*, D?) or (D3, X,,) x I, where (D3, X,,) denotes the pair as illustrated in
Fig. 0.3 and

(c) level preserving if there is a map ¢; : G — S for each t € I such that
O(x,t) = (¢d¢(x),t) for any x € G, t € I.

Kl

D

X, (DB2Xn)x 1

Fig. 0.3

(2) f and g are cobordant, denoted by f (Cob) g, if there exists a locally flat
embedding ® : G x I — S3 x I between f and g (see Fig. 0.4).

A2

Fig. 0.4. Cobordant spatial embeddings

(3) f and g are isotopic, denoted by f {59 g, if there exists a level preserving

embedding ® : G x I — S3 x I between f and g. Isotopy on spatial graphs

is an application of Alexander trick, see Fig. 0.5.
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@ (Iso)
Y

N

N\ A s

Fig. 0.5. Isotopic spatial embeddings

(4) f and g are I-equivalent if they are “cobordant” or “isotopic”. Precisely
they are I-equivalent if there exists an embedding ® : G x I — S3 x I

between f and g.

(5) fand g are edge-homotopic, denoted by f £ g if f and g are transformed

into each other by self crossing changes and ambient isotopic, see Fig. 0.6.
46 e
\—/ Y

Fig. 0.6. Edge-homotopic spatial embeddings (2-component links)

Here self crossing changes mean the crossing changes on the same spatial

edge as illustrated in Fig. 0.7.

Fig. 0.7. Self crossing change
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Remark. Edge-homotopy on spatial graphs is a generalization of link-homotopy on

links in the sense of Milnor [10].

A graph G is said to be planar if there exists an embedding f : G — S2, and
is said to be non-planer otherwise. By the well-known Kuratowski’s theorem, G is
non-planar if and only if it contains a subgraph which is homeomorphic to K5 or

K3 3 as illustrated in Fig. 0.8

Ks Ks3
Fig. 0.8

Definition 0.3. Suppose that G is planar. Let f be a spatial embedding of G.
(1) f is trivial if f is ambient isotopic to an embedding h : G — S? C S3.
(2) fis slice if f is cobordant to the trivial embedding.

Remark. The well-definedness of the trivial embedding was shown in [8]: Any two

embeddings of G into $? C S are actually ambient isotopic.

1. DELTA EDGE-HOMOTOPY, DELTA VERTEX-HOMOTOPY

In this section, we introduce two more equivalence relations, which can be re-
garded as a natural extension of delta link-homotopy on links. These are the main
subjects in this talk.

A delta move is a local move on links as illustrated in Fig. 1.1. This move was
introduced in [9, 12] and showed that it is an unknotting operation for knots. This

is naturally extended to a local move to spatial graphs.

Gy

Fig. 1.1. Delta move
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Remark. The delta move is not an unlinking operation for links. Because it keeps

linking numbers of links invariant.

Adding certain restrictions, let us introduce two similar local moves. A self delta
move is defined to be the delta move on the same spatial edge as illustrated in Fig.

1.2.

Fig. 1.2. Self delta move

A quasi adjacent-delta move is defined to be the delta move on exactly two

adjacent spatial edges as illustrated in Fig. 1.3.

Varis vl
SRR

Fig. 1.3. Quasi adjacent-delta move

By using these moves, two equivalence relations are defined.

Definition 1.1. ([18]) Two spatial embedding f,g: G — S3 are

(1) delta edge-homotopic, denoted by f2"Wg if f and g are transformed into

each other by self delta moves and ambient isotopies,
(2) delta vertex-homotopic, denoted by f VMg if f and g are transformed into

each other by quasi adjacent-delta moves and ambient isotopies,

Remark.

e In the case of G = S'II--- 11 S, delta edge-homotopy and delta vertex-
homotopy are equivalent as equivalence relations, for they are natural ex-

tension of delta link-homotopy on links [29, 30, 17, 13, 14, 15].
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e In general, a self delta move is not an unlinking operation. However it
actually is for ribbon links and for 2-component boundary links [29, 30]. It

is still open for boundary links with three or more components.

A motivation to study these moves, at least for the author, is to classify spatial
graphs without considering ‘local knots’. In some sense, the properties of spatial
graphs invariant under self crossing changes or self delta moves must be essential

in spatial graph theory independent from knot theory.

2. RELATION TO THE OTHER EQUIVALENCE RELATIONS

Theorem 2.1. The following implications hold [32].

Prerng

Ambient isotopy I-equivalence | —» | Edge-homotopy
g

™ [y ]~

Moreover the following implications hold [18].

‘Ambient isotopy‘ . ‘ Isotopy ‘ . ‘Edge—homotopy‘

N N /

Delta edge-homotopy |, | Delta vertex-homotopy
g

In the theorems above, — means that f O g implies f @ g. It is

remarked that there are no implications between ones where no vectors are drawn,

and no converses of the implications described above do not hold.

Outline of proof. We can see that | (DEH) ‘—>‘ (DVH) ‘—>‘ (EH) ‘ by Fig. 2.1.
To show that ‘ (Iso) ‘ — ‘ (DVH) |, we use the next claim.

Claim. Each of the moves as illustrated in Fig. 2.2 is realized by delta moves and

ambient isotopies.

Proof. See Fig. 2.3 for example.
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XXX

isotopic

%

Fig. 2.5

We note that crossing changes can be regarded as a ‘band sum of Hopf links’, see
Fig. 2.4. With the claim above and the fact that isotopy implies edge-homotopy,
Fig. 2.5 illustrates the implication ‘ (Iso) ‘—> ‘ (DVH) ‘

Please see [18] for detailed proofs and proofs of other parts. O
Together with «’s result [32], we have the following corollary.

Corollary 2.2. Let G be a finite graph. Then the following are equivalent.

Every pair of spatial embeddings of G are isotopic.
Every pair of spatial embeddings of G are I-equivalent.

(1)
(2)
(3) Every pair of spatial embeddings of G are delta vertex-homotpic.
(4) Every pair of spatial embeddings of G are edge-homotpic.
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(5) G is a generalized bouquet, i.e., G does not contain a subgraph which is

homeomorphic to disjoint cycles, K4 or D3 as illustrated in Fig. 2.6.

WA &

Fig. 2.6

Recently the author obtained the following related result.

Theorem 2.3. ([21]) Let G be a finite graph. Then the following are equivalent.

(1) Every pair of spatial embeddings of G are delta edge-homotpic.
(2) G does not contain a subgraph which is homeomorphic to a g-curve or
disjoint cycles.

(3) G is a bouquet as illustrated in Fig. 2.7.

Fig. 2.7

3. DELTA EDGE- & DELTA VERTEX-HOMOTOPY INVARIANTS

We start with an example of a delta edge-homotopy invariant. A subgraph of G
is called a cycle if it is homeomorphic to S*. A cycle of a graph is called a k-cycle

if it contains exactly k edges.

Example. Set G denotes a #-curve, and give labels to its vertices and edges as in
Fig. 3.1. We denote the three cycles ex U es, es Ue; and ey Ues of G by 71, 72 and

~3 respectively.
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Fig. 3.1

Given spatial embedding f : G — 52, we define

3
a(f) = Zaz(f(%)) (mod 2)

where as denotes the second coefficient of the Conway polynomial of the knot.
This a become a delta edge-homotopy invariant, showed as follows. Recall that
az(K+) — az2(K_) = 1 holds for the knots K and K_ as illustrated in Fig. 3.2
[26].

Fig. 3.2

Assume that a f-curve g is obtained from f by a single self delta move on f(eq)

as illustrated in Fig. 3.3. Then we have that

3
a(f) —alg) = Z {aa(f (7)) — aza(g(7i))} = 2 =0 (mod 2).

This implies that « is a delta edge-homotopy invariant.

Now let h be a trivial f-curve and f a f-curve as illustrated in Fig. 3.4. Then,
by direct calculations, we have that a(h) = 0 and a(f) = 1 (mod 2). Thus we
can conclude that h(/D;EE) f. However it depends only upon the Arf invariant of
constituent knots, so, it seems to be not strong enough. For example, we cannot
distinguish any almost trivial theta curve (i.e., spatial embedding with no non-trivial

knots) from the trivial one by a.
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Fig. 3.4

We generalize this invariant in the following way. Let I'(G) be the set of all
cycles of a graph G and E(G) the set of all edges of G. For an edge e € E(G), we

L.(G) = {y € T(G) |7 > e}.

Also, for edges ey, es € E(G), we set

Fehez(G) = {’V e I'(G) ‘ Yo 61762}-

Definition 3.1. Let w: I'(G) — Z,, be a map, which we call a weight, where Z,,

denotes the subset {0,1,...,m — 1} of the infinite cyclic group Z (we admit m = 0,
and then Zg denotes Z).

(1) wis weakly balanced on an edge e € E(G) if

Z w(v) =0 (mod m).
'YEFE(G)
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is satisfied.
(2) w is weakly balanced on a pair of adjacent edges eq,es € E(G) if
Z w(y) =0 (mod m)
’YGFel,EQ (G)

is satisfied.
Given spatial embedding f : G — S3 and a weight I'(G) — Z,,, we define

au(f)= Y wi)az(f(7)) (mod m).

v€ET(G)

Theorem 3.2. Let f : G — S? be a spatial embedding of a finite graph G and
I'(G) — Z,, a weight.
(1) If w is weakly balanced on every edge in F(G), then &, is a delta edge-
homotopy invariant.
(2) If w is weakly balanced on every pair of adjacent edges in E(G), then a,,

is a delta vertex-homotopy invariant.

The proof is similar to the discussion given in the first example in this section,
and so we omit it. The invariant q,, is an extension of a: In fact a is obtained by

choosing a weight w : I'(G) — Zy with w(y) =1 for any v € I'(GQ) if G is a f-curve.

Next we will construct another invariant by using an order three Vassiliev invari-
ant of knots. In the following the graph G is assumed to be oriented, i.e., each edge
of G are assumed to be oriented. We set the orientation of each cycle v € T'.(G)
induced from that of e. Also we set the orientation of each cycle v € T¢, ¢, (G)

induced from that of e;.

Definition 3.3 ([33]). Let w: I'(G) — Z,, be a weight.

(1) wis balanced on an edge e € E(G) if

Z w(y)-vy=0in Hi(G;Z/mZ)
’YEFQ(G)
is satisfied.

(2) w is balanced on a pair of adjacent edges eq,es € E(Q) if

> w®) -y =0in Hi(G;Z/mZ)
YEL e ,eq (G)

is satisfied.

Remark. If a weight w is balanced on every edge in E(G), the invariant &, is equal

to the a-invariant o, in [33]. Also note that a balanced weight is weakly balanced.
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Now, for a spatial embedding f:G — 53, we define
) =135 Z Vitn(1) (mod m),
ern@
where V,(t) denotes the Jones polynomial2 of the link L and

d3
v = | V).
L dt3|,_,

Remark. As we will say later, the value %8‘/[((3) (1) is always an integer. It is known

that this 1—18‘/1((3) (1) is a basis of Vassiliev invariants of knots of order three.

Theorem 3.4. Let f : G — S? be a spatial embedding of a finite graph G and
I'(G) — Z,, a weight.
(1) If w is balanced on every edge in E(G), then n,, is a delta edge-homotopy
invariant.
(2) If w is balanced on every pair of adjacent edges in E(G), then n,, is a delta

vertex-homotopy invariant.

Key of the proof. Let Ky, K_ and Ky be two knots and a 3-component link as
illustrated in Fig. 3.5.

Fig. 3.5

Then we have that

3 3
V) - V1) = 2k(Ko) ~ 1,

where Lk denotes the total linking number (i.e., sum of pairwise linking numbers)
of the link Kj. This is a corollary of more general formula obtained in [5]. Since
the delta move is an unknotting operation, this formula implies that - V(B)( 1) is
an integer for any knot K.
Using this, the theorem follows from direct calculations. O
2We calculate the Jones polynomial of a link by the skein relation £V, (t) — t=1V,_(t) =

(7% —12)Vy, (1).
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Remark. The original idea of the theorem above is the construction of an edge-
homotopy invariant of spatial graphs in [33] by using the formula as(J1)—ago(J-) =

lk(Kyp), where Jy, J_ and Jp are two knots and a 2-component link as illustrated

XXX

Fig. 3.6

Example 3.5. Let G be K4 and m € Z. Let f,, be a spatial embedding of G as
illustrated in Fig. 3.7 and h the trivial one.

G=K.,
e fm h

m full twists

Fig. 3.7

Let wy : T'(K4) — Z4 be the weight defined by w(y) = 1 for every cycle v €
I'(Ky). Tt is easily checked that this w; is weakly balanced on every edge in E(Ky).

The image f,,(K4) contains two non-trivial knots J; and Js as illustrated in Fig.
3.8.

We can calculate that as(J;) = 1 and aa(J2) = 1. Thus we have

Ay (fm) =2 (mod 4)
and also obviously we have

Ay (h) =0 (mod 4).

These conclude that f,, @iﬂ)h for any m € Z.
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J

Fig. 3.8

Remark. Tt is easy to see that f,, 2V™h for any m € Z. Thus d,, can detect the

difference between delta edge-homotopy and delta vertex-homotopy.

Next we consider the weight wo : I'(Ky) — Z defined by

1 ¢ 3-cycle
T(Ky) Sy LA
—1 ~: 4-cycle.
This ws is also checked to be balanced on every edge in E(K4). By calculations,
we obtain V¥ (1) = 36m — 18 and V(1) = ~18, and so,

1
Ny (fm) = 15 (=18 = 36m +18) = —2m.

This implies that f; (/DQE) f; for any ¢ # j. So there are infinitely many spatial
embeddings of K, up to delta edge-homotopy which are mutually delta vertex-

homotopic.

Example 3.6. Let G = K5 and m € NU {0}. Let f,, be a spatial embedding of
G as illustrated in Fig. 3.9. Note that f,, 2% fy, which is achieved by the self
crossing changes as in Fig. 3.10.

Let w : I'(K5) — Z be the weight defined by

0 ~v: 3-cycle
I'(Ks5)>v+— 4 —1 ~: 4-cycle
1 v : 5-cycle.

Then we can check that this w is balanced on every pair of adjacent edges in

E(K35). After calculations, one can get ny(fm) = —2m, and therefore, f; 2/™f;
for any i # j. By Theorem 2.1, this also implies that f; (,I%Of_), fj for any i # j.

Since all f,,,’s are mutually edge-homotopic, n,, can detect the difference between
edge-homotopy and delta vertex-homotpy. Moreover there are infinitely many spa-
tial embeddings of K5 up to delta vertex-homotopy (resp. isotopy) which are mu-
tually edge-homotopic.
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4. DELTA VERTEX- & EDGE-HOMOTOPY CLASSICATION OF SPATIAL

EMBEDDINGS OF Ky

By Corollary 2.2, disjoint cycles, K4, and D3 are the ‘smallest’ graphs admitting
non-trivial spatial embeddings up to delta vertex-homotopy. This also holds for

isotopy, I-equivalence and edge-homotopy. Thus it is natural to ask:

Question. Can we classify spatial embeddings of such ‘smallest’ graphs up to delta

vertex-homotopy?

We note that if G is the disjoint cycles then delta vertex-homotopy coinsides
with edge-homotopy and all spatial embeddings of G can be classified completely
by the linking number [17]. In this section we give an answer to the case of K.

Now we put G = K4 or D3 with labels depicted as in Fig. 4.1.

e e € €3
& e
K4 2
D3
Fig. 4.1

To classify spatial embeddings of K4 up to delta vertex-homotopy, we use the
weight wy : T'(K4) — Z defined in Example 3.5. To simplify the notation, here we

use w in stead of wy. This weight is checked to be balanced on every edge in E(K4).

Remark. The weight w is actually shown to be the unique Z-valued balanced weight
up to multiplications of constant. Such a ‘canonical’ balanced weight exists for Dj,

but here we omit the details.

Since w is balanced, in particular, is weakly balanced, on every edge in E(K},),
we can consider the invariant &,. In this case, as noted in the remark just after
Definition 3.3, the invariant a,, is equal to «’s a-invariant ¢, which is an edge
homotopy invariant.

To state our classification theorem, we need to introduce one more equivalence
relation. An adjacent-delta move is defined to be the delta move on exactly three

adjacent spatial edges as illustrated in Fig. 4.2.
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Fig. 4.2. Adjacent-delta move

Remark. An adjacent-delta move does not change the types of the knots included

in the spatial graph.

Two spatial embedding f, g : G — S? are A-homotopic if f and g are transformed
into each other by quasi adjacent-delta moves, adjacent-delta moves and ambient

isotopies. Then we have the following theorem.

Theorem 4.1. Let G = K4 or D3, and w : I'(G) — Z the ‘canonical’ balanced
weight. Then two spatial embedding f, g : G — S3 are A-homotopic if and only if
au(f) = aw(g).

It can be seen that, for a trivalent graph, an adjacent-delta move is realized by

a sequence of quasi adjacent-delta moves (see Fig. 4.3). This indicates that, for a

Fig. 4.3

trivalent graph G, in particular, for G = K4, two spatial embedding f,g: G — S

are A-homotopic only if f 2¥™g. Consequently we obtain:

Corollary 4.2. Let f,g: K4 — S? be two spatial embeddings of K. Then the

following are equivalent.
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Outline of the proof of Theorem 4.1. The ‘only if’ part is almost clear: It follows
from the fact that oy, depends essentially upon as and that an adjacent-delta move
does not change the types of the knots included in the spatial graph.

To prove the ‘if’ part, we construct a complete system of the representative for
the A-homotopy types of spatial embeddings of G. For G = Ky, we prepare spatial
embeddings h,, (m € Z) as illustrated in Fig. 4.4.

y
. Al e Mﬁﬁf -

1D - & o

hm(€4)

Im| times

Fig. 4.4

Then we can show that if a,(f) = m, then f is A-homotopic to h,,. We refer
the reader to [19] for the details. This completes the proof of the theorem. O

Problem. Classify spatial embeddings of D3 up to delta vertex-homotopy or edge-
homotopy.

Remark. We remark here that the a-invariant of a spatial embedding f of K4 can

be interpreted as Milnor’s u-invariant [10] of an associated 3-component link of f.

5. DELTA EDGE-HOMOTOPY ON #-CURVES

By Theorem 2.3, disjoint cycles and a #-curve are the ‘smallest’ graphs admitting
non-trivial spatial embeddings up to delta edge-homotopy. Then again it is natural

to ask the following.
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Question. Can we classify spatial embeddings of disjoint cycles and a #-curve up

to delta edge-homotopy?

In the case of disjoint cycles, as we noted in Remark just after Definition 1.1,
the question above is equivalent to the classification problem of 2-component links

up to delta link-homotopy. This question was completely answered as follows.

Theorem 5.1 ([13, 14, 15]). Let L = J; U Jy and M = K; U K, be oriented
2-component links. Then L "% Af if and only if

(i) k(L) = k(M) and

(i) a3(L) = 1k(L) {az(J1) + az(J2)} = as(M) — k(M) {az(K1) + az(K2)}.

As the result, it suffice to consider the case of a #-curve. We prepare some
terminology. We give labels to vertices, edges and cycles of a #-curve, and give
orientations to the edges as illustrated below. Given a spatial embedding f of a
-curve, it is known [7] that there uniquely exists an orientable surface Sy such
that Sy has the image of f as a spine and its Seifert linking form vanishes (i.e.,
all pairwise linking numbers of boundary curves are zero). Then we define the

associated 3-component link Ly as the boundary 05f = K} U K]% LJK?7 see Fig. 5.1.

(S73
X L
o ,
b e1 W\)% Kfsj K
u v &\7)
N7/
€; K

Fig. 5.1. Associated 3-component link

Note that each knot K} is freely homotopic to f(v;) for i = 1,2,3. Let I1(f) :=
K]% U K?, Ia(f) = K? U K}, I3(f) = K} U KJ% be the 2-component sublinks of L.
Note that these are all algebraically split links. Concerning these links the following

is known.
Proposition 5.2 ([31],[4]). For every spatial embedding f of a -curve,

az(li(f)) = az(l2(f)) = as(l3(f))

holds.
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Remark. Since the link [;(f) is algebraically split, we have that the Sato-Levine
invariant [28] of 1;(f) coincides with as(l;(f)) [1].

By virtue of the proposition above, we can define as(f) as as(l;(f)) for some,

and hence, any i. Now we can state our classification theorem.

Theorem 5.3. Let f and g be two spatial embeddings of a f-curve. Then f P ¢

if and only if as(f) = as(g)-

Remark. By the result in [34], we can check that

3

as3(f) =) as(f(3) = @(f) (mod 2),

i=1

where the invariant &(f) was defined in the first example in Section 3.

Example (Kinoshita’s f-curve). Let f be the spatial embedding as illustrated in

Fig. 5.2, called Kinoshita’s 0-curve. This is an example of the almost unknotted

fo@

f(es) f(€2) | (f)
1

theta curve.

Fig. 5.2

For this f, as(f) = as(li(f)) = 2. Thus fC¢™h, where h is the trivial em-

bedding. Remark that the image of f does not contain nontrivial knots, and so,

af) =0,

Outline of the proof of Theorem 5.3. The ‘only if’ part follows from the fact that
ag is invariant under self-delta moves on 2-component links.

To prove the ‘if’ part, we again construct a complete system of the representative
for the delta edge-homotopy types of spatial embeddings of a §-curves. We prepare
spatial embeddings h, c,, where m € Z and ¢y € {0,1}, as illustrated in Fig. 5.3.

By a calculation we can see that as (hm,gf) =2m+ey.
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where

hime, (U) }—‘<l

} &r times

|m| times ’D@@p/\l

hm,& (V)

Fig. 5.3

Then we can show that there exists an integer m (resp. n) and ¢ € {0, 1} (resp.
g4 € {0,1}) such that f (resp. g) is delta edge-homotopic to M, (vesp. hne, ).
Thus by the assumption we have that

2m +ep = az(hm,e;) = a3(f) = as(g) = az(hnc,) = 2n +£,.

This implies that e = ¢4, and m = n. Therefore we have that f and g are delta
edge-homotopic. This completes the proof of the theorem. O
Problem. Classify spatial embeddings of K4 up to delta edge-homotopy.

Finally we give some corollaries of Theorem 5.3 and discuss about related topics.

Corollary 5.4. Any boundary 6-curve is delta edge-homotopically trivial.

Here a spatial embedding f of a #-curve 6 is called a boundary 6-curve [25] if
there exist compact, connected and orientable surfaces S1, S» and S3 in S$% such

that S; N f(0) =0S; = f(v) (i =1,2,3) and intS; NintS; = 0 (i # j).

Proof. For a boundary theta curve f, any 2-component sublink of Ly must be a
boundary link. Since the Conway polynomial of any boundary link is zero [2], we

have that a3(f) = 0. Thus we have the result by Theorem 5.3. ]
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Fig. 5.4. Boundary 6-curve

As we noted in Remark just after Definition 1.1, it is known that any 2-component
boundary link is delta edge-homotopically trivial. Thus the corollary above is the
f-curve version of this fact. We also note that the converse of the corollary above
does not hold. Consider the spatial embedding as illustrated in Fig. 5.5. This is

actually delta edge-homotopically trivial, but is not a boundary #-curve [27].

f ()

f (e1) s (F)

Fig. 5.5

Besides we mention the relationship between cobordism and delta edge-homotopy
on spatial embeddings of a #-curve. If two spatial embeddings f and g of a #-curve
are cobordant, then [;(f) and [;(g) are cobordant [31]. Thus we have the following

by Theorem 5.3 and the cobordism invariance of the Sato-Levine invariant.

Corollary 5.5. Let f, g be two spatial embeddings of a §-curve. Then f (<) ¢
implies f P g, In particular, any slice embedding (recall Definition 0.3(2)) of a

f-curve is delta edge-homotopically trivial.

It is known that such a implication does not exist for 8,, of n > 4.
The set of cobordism classes of spatial embeddings of a f-curve admits a non-

abelian group structure with the vertex connected sum [31, 11]. The corollary above
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suggests that the set of delta edge-homotopy classes, which we denote by DEH(6),
of spatial embeddings of a f-curve might have a group structure.
This is actually true: DEH(6) admits an abelian group structure with the vertex

connected sum. Besides we have the following.

Theorem 5.6. The map az : DEH(0) =/ yields an isomorphism. A generator of
DEH(6) is given by the theta curve f as in Figure 3.4.

Corollary 5.7. The set of delta edge-homotopy classes represented by almost
trivial f-curves is a subgroup of DEH(#) isomorphic to 2Z under as. A generator

of DEH() is given by Kinoshita’s theta curve.

There are infinitely many spatial embeddings of a §-curve up to cobordism which
are almost trivial and delta edge-homotopically trivial. In fact the set of cobordism
classes of almost trivial and delta edge-homotopically trivial spatial embeddings

form a subgroup of the #-curve cobordism group that contains Z°.
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