The knot $K_n^{(3,q)}$

FIGURE 1. The knot $K_n^{(3,3k+1)}$. σ_1 and σ_2 are standard generators of the 3-braid group. The box with number n indicates n right handed vertical full-twists.

FIGURE 2. The knot $K_n^{(3,3k+2)}$. The box with number -n indicates n left handed vertical full-twists.

FIGURE 3. The full knot Floer complex $CFK^{\infty}(K_n^{(3,3k+1)})$. This complex consists of the staircase complex, which is consistent with the complex of $CFK^{\infty}(T(3,3k+1))$, and box complexes. The vertices of box complexes are actually on the grid, but are drawn slightly displaced.

FIGURE 4. The full knot Floer complex $CFK^{\infty}(K_n^{(3,3k+2)})$. The staircase complex is consistent with $CFK^{\infty}(T(3,3k+2))$

 $\operatorname{CFK}^{\infty}(K_n^{(3,q)})$

$\widehat{\mathrm{HFK}}(K_n^{(3,q)})$ and the Alexander polynomial

$$\operatorname{rank}\widehat{\operatorname{HFK}}_{d}(K_{n}^{(3,3k+1)};i) = \begin{cases} n & (d,i) = (1-2j,3k+1-3j) & (j=0,\ldots,k) \\ n & (d,i) = (-2k-1-4j,-1-3j) & (j=0,\ldots,k) \\ 2n+1 & (d,i) = (-2j,3k-3j) & (j=0,\ldots,k-1) \\ n+1 & (d,i) = (-1-2j,3k-1-3j) & (j=0,\ldots,k-1) \\ n+1 & (d,i) = (-2k-3-4j,-2-3j) & (j=0,\ldots,k-1) \\ 0 & \text{otherwise}, \end{cases}$$
$$\operatorname{rank}\widehat{\operatorname{HFK}}_{d}(K_{n}^{(3,3k+2)};i) = \begin{cases} n+1 & (d,i) = (-2j,3k+1-3j) & (j=0,\ldots,k) \\ n+1 & (d,i) = (-2k-2-4j,-1-3j) & (j=0,\ldots,k) \\ 2n+1 & (d,i) = (-2k-5-4j,-3-3j) & (j=0,\ldots,k) \\ 2n+1 & (d,i) = (-2k-5-4j,-3-3j) & (j=0,\ldots,k-1) \\ n & (d,i) = (-2k-2-4j,-1-3j) & (j=0,\ldots,k-1) \\ n & (d,i) = (-2k-4-4j,-2-3j) & (j=0,\ldots,k-1) \\ n & (d,i) = (-2k-4-4-4j,-2-3j) & (j=0,\ldots,k-1) \\ n & (d,i) = (-2k-4-4j,-2-3j) & (j=0,\ldots,k-1) \\ n & (d,i) = (-2k-4-4j,-2-3j) & (j=0,\ldots,k-1) \\ n & (d,i) = (-2k-4-4j,-2-3j) & (d_i) = (d_i) \\ n & (d_i) = (d_i) & (d_i) = (d_i) & (d_i)$$

For a knot K, $\Delta_K(t) = \sum_{d,i} (-1)^d t^i \cdot \operatorname{rank} \widehat{\operatorname{HFK}}_d(K;i)$ [Ozváth–Szabó].

$$\begin{split} \Delta_{K_n^{(3,3k+1)}}(t) &= \sum_{i=1}^k \{-nt^{3i+1} + (2n+1)t^{3i} - (n+1)t^{3i-1}\} \\ &\quad -nt + (2n+1) - nt^{-1} \\ &\quad + \sum_{i=1}^k \{-(n+1)t^{-3i+1} + (2n+1)t^{-3i} - nt^{-3i-1}\}. \end{split}$$

$$\Delta_{K_n^{(3,3k+2)}}(t) &= \sum_{i=1}^k \{(n+1)t^{3i+1} - (2n+1)t^{3i} + nt^{3i-1}\} \\ &\quad (n+1)t - (2n+1) + (n+1)t^{-1} \\ &\quad + \sum_{i=1}^k \{nt^{-3i+1} - (2n+1)t^{-3i} + (n+1)t^{-3i-1}\}. \end{split}$$

A doubly pointed Heegaard diagram of $K_n^{(3,3k+1)}$ and $\mathrm{CFK}^\infty(K_1^{(3,4)})$

4

FIGURE 5. How to move the arc t to get a genus one doubly pointed Heegaard diagram of $K_n^{(3,3k+1)}$. The bottom right is the diagram of $K_0^{(3,3k+1)} = T_{3,3k+1}$. To obtain the diagram of $K_n^{(3,3k+1)}$, we need to add n-twists clockwisely in the region indicated the dotted box.

FIGURE 6. Parallel arcs are merged into one curve with multiplicity.

FIGURE 7. The β curve is neatly aligned. Bottom is a detailed description of how to aline the β curve.

FIGURE 8. A diagram of $K_0^{(3,3k+1)}$ after left handed Dehn twists along the α curve.

FIGURE 9. The rectangle is obtained by cutting the diagram in Figure 8 along α and the standard longitude. When it restores the torus, the top and bottom sides (red) become the α curve.

FIGURE 10. (Top) The universal cover of a diagram of $K_0^{(3,4)}$ (see Figure 9). Let $\tilde{\alpha}$ (red) and $\tilde{\beta}$ (blue) be one connected components of lifts of α and β , respectively. (Bottom) The universal cover of a diagram of $K_1^{(3,4)}$. It can be obtained from the top figure by twisting two points once clockwisely in the dotted box. The labeling of $\tilde{\alpha} \cap \tilde{\beta}$ is indicated to the left of each point. Note that the white dot is z and the black dot is w.

from	to	base point	from	to	base point
a_1^1	a_2^1	•	c_{1}^{1}	c_2^1	0
	b_1^1	•		d_1^1	0
	f_1	00		f_1	••
	e_1	00		e_1	••
a_2^1	a_{3}^{1}	0	c_{2}^{1}	c_{3}^{1}	•
	b_2^1	•		d_2^1	0
a_{3}^{1}	b_3^1	•	c_{3}^{1}	d_3^1	0
b_1^1	a_{3}^{1}	0	d_1^1	c_{3}^{1}	•
	b_2^1	•		d_2^1	0
b_2^1	b_3^1	0	d_2^1	d_3^1	•
f_1	f_2	•	e_1	f_2	•
	e_2	0		e_2	0
f_2	g	0	e_2	g	•

TABLE 1. The list of disks contributing to differentials of $\operatorname{CFK}^{\infty}(K_1^{(3,4)})$. For example, there is a disk connecting a_1^1 to a_2^1 with one black dot w.

Alexander grading	generator	
4	b_2^1	
3	$a_2^1, \ b_1^1, \ b_3^1$	
2	$a_1^1, \ a_3^1$	
1	f_2	
0	g, f_1, e_1	
-1	e_2	
-2	c_{1}^{1}, c_{3}^{1}	
-3	$c_2^1, \ d_1^1, \ d_3^1$	
-4	d_{2}^{1}	

TABLE 2. The Alexander gradings of the generators of ${\rm CFK}^\infty(K_1^{(3,4)}).$

Change of basis:

FIGURE 11. The full knot Floer complex $CFK^{\infty}(K_1^{(3,4)})$. The information of the coefficient U is omitted. Left is the complex derived from Figure 10. By applying the change of basis, right is obtained.