The knot K, ,(13"1)
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FIGURE 1. The knot K7(13,3k+1). o1 and o9 are standard generators
of the 3-braid group. The box with number n indicates n right
handed vertical full-twists.
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FIGURE 2. The knot K,(LS’SkJﬂ). The box with number —n indi-
cates n left handed vertical full-twists.
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FIGURE 3. The full knot Floer complex CFK“(K,SB’%H)). This
complex consists of the staircase complex, which is consistent with
the complex of CFK™(T'(3,3k + 1)), and box complexes. The
vertices of box complexes are actually on the grid, but are drawn
slightly displaced.
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FIGURE 4. The full knot Floer complex CFK™(K**™)). The
staircase complex is consistent with CFK* (T'(3, 3k + 2))



AFK(K>?) and the Alexander polynomial
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For a knot K, Ak (t) = Z(—l)dti - rank ﬁﬁ(d(K; i) [Ozvéth-Szabd).
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(d,i) =(1—24,3k+1—3j)
(d,i) = (~2k — 1 4,1~ 3))
(d,i) = (=24, 3k — 37)

(d,i) = (-2k — 4 — 45, -3 — 3j)
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otherwise,
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A doubly pointed Heegaard diagram of KB and CFKOO(KF’A))
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FIGURE 5. How to move the arc t to get a genus one doubly
pointed Heegaard diagram of Kff’gkﬂ). The bottom right is the di-

(3,3k+1) _ . . (3,3k+1)
agram of K| = T3 3541. To obtain the diagram of K ,
we need to add n-twists clockwisely in the region indicated the

dotted box.

FIGURE 6. Parallel arcs are merged into one curve with multiplic-
ity.



FIGURE 7. The (8 curve is neatly aligned. Bottom is a detailed
description of how to aline the £ curve.

FIGURE 8. A diagram of K(()3’3k+1) after left handed Dehn twists

along the a curve.
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FIGURE 9. The rectangle is obtained by cutting the diagram in
Figure 8 along a and the standard longitude. When it restores the
torus, the top and bottom sides (red) become the « curve.
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FIGURE 10. (Top) The universal cover of a diagram of K(()3’4) (see
Figure 9). Let & (red) and § (blue) be one connected components

of lifts of o and B, respectively. (Bottom) The universal cover

of a diagram of K1(3’4). It can be obtained from the top figure

by twisting two points once clockwisely in the dotted box. The
labeling of & N f is indicated to the left of each point. Note that
the white dot is z and the black dot is w.
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TABLE 1. The list of disks contributing to differentials of

CFKOO(KS’A)). For example, there is a disk connecting ai to a3
with one black dot w.

TABLE 2. The
CFK> (K3Y).

Alexander grading | generator
4 b}
az, by, b
2 al, ai
1 f2
0 g, f1, €1
—1 es
—2 ct, 3
3 o, db, db
4 d
Alexander gradings

of the generators

of



Change of basis:
e bl — b +al =: B,
o dl — d} + ¢ =: D},
o fi — fi4+e = F1.
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FiGure 11. The full knot Floer complex CFKOO(KEBA)). The
information of the coefficient U is omitted. Left is the complex
derived from Figure 10. By applying the change of basis, right is
obtained.



