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1 Preliminaries

Let H3 :=
{
(x1, x2, x3) ∈ R3 |x3 > 0

}
be the upper half-space model of hyper-

bolic space. We regard its boundary in R3 ∪ {∞} as C ∪ {∞}, which is called
the sphere at infinity, and we denote it by ∂H3. Let B3 be the open unit sphere
centred at the origin of R3, and we regard it as the Poincaré ball model of
hyperbolic space; indeed, an isometry, say Φ, from H3 to B3 is given by the
reflection along C, followed by the inversion along the sphere of radius

√
2 and

centre (0, 0, 1). Then Φ(∂H3) = ∂B3 and Φ|C coincide with the stereographic
projection from (0, 0, 1). For a hyperbolic plane P in H3, we denote its closure
in H3 := H3 ∪ ∂H3 by P , and its boundary in H3 (i.e., P ∩ ∂H3) by ∂P . Any
hyperbolic plane in B3 is the image of some hyperbolic plane P in H3 by Φ, and
it is the intersection with B3 of a Euclidean sphere or plane, say P ∗, orthogonal
to ∂B3. If P ∗ is a sphere, then we say its centre (in the Euclidean sense) the
centre of P (or Φ(P )), and if P ∗ is a plane, then the centre of P (or Φ(P ))
means ∞. Every point in R3 − B3 uniquely determines a hyperbolic plane in
B3.

Definition. 1. For a point x ∈ H3 and a loxodromic or a parabolic element
T ∈ PSL2(C), we define B(x;T ) ⊂ H3 as follows:

(a) If x ∈ H3 with T (x) 6= x, then B(x;T ) is defined as the bisecting
perpendicular geodesic plane of the geodesic segment joining x and
T−1(x).

(b) If x ∈ ∂H3 with T (x) 6= x, then B(x;T ) is a geodesic plane defined
(and well-defined) as a limit of B(x′;T ) by a convergence of x′ ∈ H3

to x.

(c) If x is a fixed point of T , then B(x;T ) := {x}.
2. For a point x ∈ H3, we denote the centre of Φ(B(x;T )) by C(x;T ).

The following lemma says that the definition of B(x;T ) for a fixed point x
is well-defined.

Lemma 1 ([JM88, Lemma 2.4]). Let T ∈ PSL2(C), and let x ∈ ∂H3 with
T (x) 6= x.
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1. If T is loxodromic, then ∂B(x;T ) does not pass through any fixed point
of T . As x approaches a fixed point of T , then B(x;T ) converges to the
point.

2. If T is parabolic, then ∂B(x;T ) passes through the fixed point of T . There
is a suitable approach of x to the fixed point such that B(x;T ) converges
to the point.

When x ∈ H3, the actual coordinate of C(x;T ) is obtained by the following
calculations:

a := −Φ(x) +
(
1− |Φ(x)|2)(Φ(T−1x)∗ − Φ(x)

)∗
,

b := a∗ +
(
1− |a∗|2)(Φ(x) + a∗

)∗
,

C(x;T ) =
{

Φ(x) +
(
1− |Φ(x)|2)(Φ(x) + b∗

)∗}∗
,

where y∗ means the complex conjugate of y−1. You can see that C(x;T )
converges to the expression in [JM88, 2.9] as x3 → 0, if you calculate C(x;T )
explicitly.

2 Notations and terminologies

1. First we define a Dirichlet fundamental polyhedron P0(y) as follows:

P0(y) :=





{
x ∈ H3

∣∣ d(x, y) ≤ d(y, Tx),∀T ∈ G
}

if y ∈ H3,





x ∈ H3

∣∣∣∣∣∣∣

x lies in the closure of the

component of H3 −B(y;T ) that
is adjacent to y, ∀T ∈ G,T 6= id.





if y ∈ ∂H3.

• When y ∈ ∂H3, P0(y) is well defined and is a fundamental polyhedron
only when y has special properties, for example, when y ∈ Ω(G),
where Ω(G) is the set of ordinary points with respect to G on ∂H3

• The point y is called the center of P0(y).

• P(y) := P0(y) ∩ (
H3 ∪ Ω(G)

)
.

2. Associate with each edge e of P0(y), is an edge cycle of length k,
(T1 = id., T2, . . . , Tk, Tk+1 = T1 = id.), where (P(y), T2P(y), . . . , TkP(y))
is the cyclic arrangement of polyhedra about e in the G-orbit of P(y).

Equivalently, k is the number of disjoint edges of P0(y) that are
equivalent to e under G.

3. • The order k of a vertex v of P0(y) is the number of distinct vertices
of P0(y) that are equivalent to v under G.
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Equivalently, k is the number of polyhedra,
P0(y), T2P0(y), . . . , TkP0(y)
in the G-orbit of P(y) that share the vertex v.

• The transformations Ti ∈ G, are said to be associated with v.

4. • A cusp of P(y) is a parabolic fixed point that lies in the Euclidean
closure of P(y).

• It is of rank one or rank two according to the rank of the parabolic
subgroup that fixes it.

5. • Boundary vertices and boundary edges of P(y) are those lie in Ω(G).

• Associated with each boundary vertex is a vertex cycle analogous to
the edge cycles of P0(y).

6. The full line containing an edge e of P0(y) is denoted by `(e).

3 Original definition and the main theorem

The polyhedron P(y) is called generic if it has the following properties.

(i) (i-a) Each edge e of P0(y) for which `(e) does not end at a parabolic fixed
point has an edge cycle of length three.

(i-b) If `(e) ends at a parabolic fixed point ζ, then

– e has an edge cycle of length three or four,
– and every transformation entering into the cycle fixes ζ.

(ii)(ii-a) Three edges emanate from each vertex v of P0(y).

(ii-b) For at most one of them e, `(e) ends at a parabolic fixed point ζ.

(ii-c) The order of v is either four or five.

– In the latter case, three of the four transformations 6= id. asso-
ciated with v are parabolic and fix the end point ζ of `(e) for an
edge e emanating from v.

(iii)(iii-a) Every boundary vertex v∗ is an end point of exactly one edge e of
P0(y).

(iii-b) The vertex cycle at v∗ has length three or four.

– In the latter case,
(iii-b1) either all the transformations are parabolic and fix the other

end of e,
(iii-b2) or they all lie in a cyclic loxodromic subgroup and y ∈ ∂H3.

(iv)(iv-a) No edges of P0(y) end at a rank one cusp ζ of P(y)
but two faces of P(y) are tangent to ζ with a face pairing transfor-
mations that fixes ζ.
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(iv-b) Every rank two cusp ζ is the end point of four or six edges of P0(y).

Theorem 2. Let G be a Kleinian group without elliptic elements. There are
dense sets of points G∗ ⊂ ∂H3,G ⊂ H3 such that for any y ∈ G, or for any
y ∈ G∗ ∩ Ω(G), P(y) is a generic fundamental polyhedron for G.

4 Problems

1. There is a contradiction between (ii-a) and (ii-c).

Suppose there is a vertex v with its order five. Then, by calculating the
Euler characteristic, you can see that the neighborhoods of v is constructed
by four tetrahedra and one square pyramid. Since each of them are images
of neighborhoods of vertices of P0(y), there is a vertex from which four
edges emanate. This contradicts (ii-a).

On the other hand, if we assume (ii-a), the discussion above says that
there is no vertex in the interior of a length four edge. But I could not
find the proof in [JM88] which guaranteed this result, and I cannot prove
it by myself now.

2. It seems that there is also a contradiction between (i) and (iii-b2).

Suppose that there is a boundary vertex v∗ satisfying (iii-b2). Then, by
(iii-a), the length of the cycle of the edge, say e, ending at v∗ is four. Then,
by (i-a), the other end point of e must be a parabolic fixed point. In this
case, by (i-b), the transformations constructing e must be parabolic, a
contradiction.

So this argument says that there is no boundary vertex satisfying (iii-b2),
but this part of the proof in [JM88, Theorem 4.6] is owned by [JM88,
Lemma 4.4], and it says there is a possibility of existence of boundary
vertices satisfying (iii-b2).
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